

### **FEATURES AND BENEFITS**

- 75 V maximum rating with integrated buck regulator for high efficiency
- Fully integrated single-shunt sensorless FOC controller (code-free)
- Speed, torque, and power mode operation
- · Power-loss brake functionality
- Universal speed curve
- · Fault mode brake
- Analog/PWM/Clock mode speed control
- ±1.5% precision speed control
- · Configurable RD or FG output
- Slew-rate control for electromagnetic-interference (EMI) mitigation
- Proprietary nonreverse fast startup
- Ultra-quiet low-speed operation
- Current-control soft start
- Windmill startup operation
- No  $V_{BB}$  boost on powerup with spinning motor
- I<sup>2</sup>C serial port
- Power limit protection
- · Configurable current and power limit
- Lock detection
- Overcurrent limit (OCL)
- Overvoltage protection (OVP)
- Short-circuit protection (OCP)
- Logic input compatible with 3.3 V and 5 V

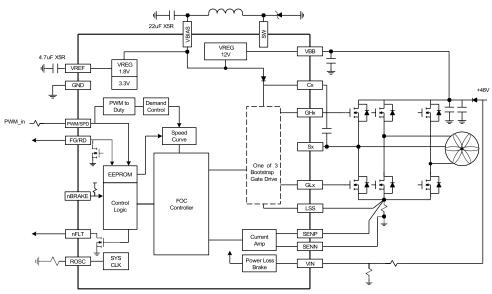
#### DESCRIPTION

The A89333 is a three-phase, sensorless, brushless DC (BLDC) motor controller. A field-oriented control (FOC) algorithm is fully integrated to achieve the best efficiency and acoustic noise performance. The device also optimizes motor-startup performance in stationary, forward, and reverse windmill conditions.

Programmable profiles and closed-loop controls are included for constant power and constant speed operations. This eliminates the requirement for a microprocessor-based system and minimizes programming requirements.

A simple inter-integrated circuit (I<sup>2</sup>C) interface is provided for setting motor-related parameters, control-related parameters, and startup profiles, which are stored in nonvolatile memory (NVM). The I<sup>2</sup>C interface can also be used to control the motor directly and to provide speed and status feedback. Password protection is available for stored NVM data.

The A89333 is available in a 28-contact 4 mm × 4 mm quad-flat no-leads (QFN) package with exposed thermal pad (suffix EC).


### **APPLICATIONS**

- 48 V server fans
- Telecommunications (telecom) fans
- Home appliance fans

### **PACKAGE**

28-Contact QFN with exposed pad (EC package)





**Figure 1: Typical Application** 

# 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **TABLE OF CONTENTS**

| Specifications                                             | 3  |
|------------------------------------------------------------|----|
| Pinout Diagram and Terminal List Table                     |    |
| Pin Descriptions                                           |    |
| VBB                                                        |    |
| VREF                                                       | 8  |
| VBIAS                                                      | 8  |
| SW                                                         | 8  |
| FG/RD                                                      | 8  |
| PWM/SPD                                                    | 8  |
| ROSC                                                       | 8  |
| Sx                                                         | 8  |
| Cx                                                         | 8  |
| GHx                                                        | 8  |
| GLx                                                        | 8  |
| LSS                                                        | 8  |
| SENN                                                       | 8  |
| SENP                                                       | 8  |
| nBRAKE                                                     | 9  |
| nFLT                                                       | 9  |
| Functional Description                                     | 10 |
| Powerup and Initialization                                 |    |
| External Command Source                                    | 11 |
| Analog Input Voltage (EXT_CMD_SRC, 0x1)                    |    |
| PWM Duty Cycle (EXT_CMD_SRC, 0x2)                          | 11 |
| Frequency Mode (EXT_CMD_SRC, 0x3)                          | 12 |
| I <sup>2</sup> C Mode (EXT_CMD_SRC, 0x0)                   | 12 |
| Universal Curve Controller: UCC                            |    |
| Motor Rotation Direction                                   |    |
| Speed, Torque, or Power Control Modes                      |    |
| Torque Mode (0x2)                                          |    |
| Power Mode (0x1)                                           | 15 |
| Maximum System Speed                                       | 15 |
| Maximum System Current and Bus Current Sensing             |    |
| DC-Link Voltage                                            | 16 |
| Maximum Electrical Power                                   |    |
| Speed Limit                                                |    |
| Power Limit                                                | 16 |
| Motor Control Application (MCA) Finite State Machine (FSM) |    |
| Standby—SBY                                                | 17 |
| Windmilling—WNDML                                          |    |
| IPD and Align                                              | 18 |
| Ramp-Up—RAMPUP                                             |    |
| Drive—DRIVE                                                | 19 |
| Regenerative Mode                                          |    |
| Brake—BRAKE                                                |    |
| FOC Algorithm Speed and Current Loop                       |    |
| Observer                                                   | 20 |

| Diagnostic and Protection Features               |    |
|--------------------------------------------------|----|
| VBB Undervoltage—VBB UVS                         |    |
| VBB, UV, and NVM Reprogramming                   | 21 |
| Over-Temperature Protection—OVT/TSD              | 22 |
| VBB Overvoltage Protection—VBB OVP               |    |
| Overcurrent Protection—OCP (Short Protection)    |    |
| Loss of Sync (Lock/Stall Detection)              |    |
| No-Motor Start                                   |    |
| VBB Overvoltage Variable Limiter                 | 23 |
| Overcurrent Limit                                | 24 |
| Maximum Power Limit                              |    |
| Application Features                             | 25 |
| EEPROM NVM for Storing Motor Control             |    |
| and Configuration Data                           | 25 |
| FG/RD Pin                                        | 25 |
| FG                                               | 25 |
| RD                                               |    |
| FG in VBB UV Condition                           | 26 |
| FG ID Pattern Generation                         | 26 |
| Dead Time Configuration                          | 27 |
| Slew Rate Control                                |    |
| Buck Converter                                   |    |
| Advanced Features                                | 28 |
| BEMF Compensation                                | 28 |
| Soft-Off Deceleration                            |    |
| Soft Start                                       |    |
| Quiet Start                                      |    |
| Forced OL                                        | 28 |
| VIN and Power-Loss Brake                         |    |
| No-Power Brake                                   |    |
| Registers and Nonvolatile Memory (NVM) Map       |    |
| User Registers                                   |    |
| SW Status Register, SW_STATUS                    |    |
| I <sup>2</sup> C Command Register, REF_CMD       | 43 |
| SW Fixed-Address Variables                       |    |
| FOC Internal Variables                           |    |
| Programming the EEPROM                           |    |
| <sup>2</sup> C Serial Interface                  |    |
| I <sup>2</sup> C Timing Diagrams                 | 46 |
| Read Procedure                                   |    |
| Write Procedure                                  | 47 |
| Operation Modes and Customer Password Protection |    |
| Application Information                          |    |
| Layout Notes                                     |    |
| Pin Diagram                                      |    |
| Package Outline Drawing                          | 52 |



### **SPECIFICATIONS**

### **SELECTION GUIDE**

| Part Number | Package                                          | Packing                      |
|-------------|--------------------------------------------------|------------------------------|
| A89333GECSR | 28-lead 4 mm × 4 mm QFN with exposed thermal pad | 6000 pieces per 13-inch reel |



### ABSOLUTE MAXIMUM RATINGS [1][2]

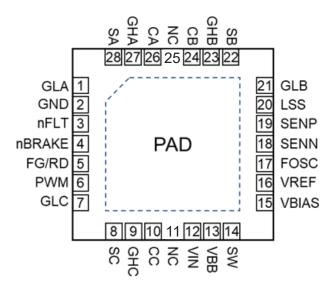
| Parameter                             | Symbol           | Conditions              | Rating                                       | Units |
|---------------------------------------|------------------|-------------------------|----------------------------------------------|-------|
| Supply Voltage                        | V <sub>BB</sub>  | V <sub>BB</sub> = 75 V  | -0.3 to 75                                   | V     |
| Power Loss Brake Terminal             | V <sub>I</sub>   | V <sub>IN</sub>         | -0.3 to 75                                   | V     |
| Speed Control Terminal                | V <sub>I</sub>   | PWM/SPD                 | -0.3 to 75                                   | V     |
| Logic Input Terminal                  | V <sub>I</sub>   | nBRAKE                  | -0.3 to 6                                    | V     |
| Logic Bidirectional Terminal          | V <sub>IO</sub>  | FG/RD                   | -0.3 to 75                                   | V     |
| Logic Output Terminal                 | Vo               | nFLT                    | -0.3 to 6                                    | V     |
| Buck Switch Terminal                  | V                |                         | –1 to 75                                     | V     |
| Buck Switch Terminal                  | V <sub>SW</sub>  | t <sub>W</sub> < 0.5 μs | -4 to 75                                     | V     |
| Bootstrap Supply Terminals            | V <sub>CX</sub>  | CA, CB, CC              | –0.3 to V <sub>BIAS</sub> + 75               | V     |
| Motor-Phase Terminals                 | V <sub>SX</sub>  | SA, SB, SC              | V <sub>CX</sub> – 4 to V <sub>CX</sub> + 0.3 | V     |
| High-Side Gate Drive Output Terminals | $V_{GHX}$        | GHA, GHB, GHC           | $V_{SX} - 0.3 \text{ to } V_{CX} + 0.3$      | V     |
| Low-Side Gate Drive Output Terminals  | $V_{GLX}$        | GLA, GLB, GLC           | $V_{LSS} - 0.3 \text{ to } V_{BIAS} + 0.3$   | V     |
| Input Terminal                        | V <sub>I</sub>   | ROSC                    | -0.3 to 6                                    | V     |
| Output Terminal                       | V <sub>o</sub>   | VBIAS                   | -0.3 to 15                                   | V     |
| Output Terminal                       | Vo               | VREF                    | -0.3 to 3.4                                  | V     |
| Input Terminal                        | V <sub>I</sub>   | SENP, SENN              | -4 to 6                                      | V     |
| Dridge Law Cide Course Terrainele     | .,,              |                         | -500 to 500                                  | mV    |
| Bridge Low-Side Source Terminals      | V <sub>LSS</sub> | t <sub>w</sub> < 200 ns | -4 to 6                                      | V     |
| Junction Temperature                  | T <sub>j</sub>   |                         | 150                                          | °C    |
| Storage Temperature Range             | T <sub>s</sub>   |                         | -55 to 150                                   | °C    |

<sup>[1]</sup> With respect to GND, unless otherwise noted. Ratings apply when no other circuit operating constraints are present.

### **THERMAL CHARACTERISTICS:** May require derating at maximum conditions; see application information.

| Characteristic                                   | Symbol          | Test Conditions [1]                                                       |    | Unit |
|--------------------------------------------------|-----------------|---------------------------------------------------------------------------|----|------|
| Package Thermal Resistance (Junction to Ambient) | $R_{\theta JA}$ | 28-contact QFN (package EC), on 2-sided PCB with 1 in <sup>2</sup> copper | 45 | °C/W |
| Package Thermal Resistance (Junction to Pad)     | $R_{\theta JP}$ |                                                                           | 2  | °C/W |

<sup>[1]</sup> Additional thermal information is available on the Allegro website.


### RECOMMENDED OPERATIONAL RANGE

| Characteristics             | Symbol          | Test Conditions | Min. | Тур. | Max. | Units |
|-----------------------------|-----------------|-----------------|------|------|------|-------|
| Power Supply Voltage        | V <sub>BB</sub> | DC              | 7    | 48   | 75   | V     |
| Logic Voltage Range         | V <sub>I</sub>  | nBRAKE          | -0.3 | -    | 5.5  | V     |
| Operating Temperature Range | T <sub>a</sub>  |                 | -40  | _    | 105  | °C    |



<sup>[2]</sup> Lowercase "x" in terminal names and symbols indicates a variable sequence character.

### PINOUT DIAGRAM AND TERMINAL LIST TABLE



EC Package (Top View)

### **Terminal List Table**

| Number | Name    | Function                                            |
|--------|---------|-----------------------------------------------------|
| 1      | GLA     | Gate drive output                                   |
| 2      | GND     | Ground                                              |
| 3      | nFLT    | Logic output                                        |
| 4      | nBRAKE  | Logic input                                         |
| 5      | FG/RD   | Logic output; also used as SDA for I <sup>2</sup> C |
| 6      | PWM/SPD | Logic input; also used as SCK for I <sup>2</sup> C  |
| 7      | GLC     | Gate drive output                                   |
| 8      | SC      | Motor output                                        |
| 9      | GHC     | Gate drive output                                   |
| 10     | СС      | C <sub>BOOTSTRAP</sub>                              |
| 11     | NC      | No connection                                       |
| 12     | VIN     | Analog input                                        |
| 13     | VBB     | Power supply input                                  |
| 14     | SW      | Switch node                                         |

| Number | Name  | Function                        |
|--------|-------|---------------------------------|
| 15     | VBIAS | Voltage regulator output        |
| 16     | VREF  | Logic supply output             |
| 17     | ROSC  | Analog input                    |
| 18     | SENN  | Current sense negative terminal |
| 19     | SENP  | Current sense positive terminal |
| 20     | LSS   | Low-side source                 |
| 21     | GLB   | Gate drive output               |
| 22     | SB    | Motor output                    |
| 23     | GHB   | Gate drive output               |
| 24     | СВ    | C <sub>BOOTSTRAP</sub>          |
| 25     | NC    | No connection                   |
| 26     | CA    | C <sub>BOOTSTRAP</sub>          |
| 27     | GHA   | Gate drive output               |
| 28     | SA    | Motor output                    |

### **ELECTRICAL CHARACTERISTICS** [1]: Valid at $T_J = 25$ °C, $V_{BB} = 48$ V (unless noted otherwise)

| Characteristics             | Symbol               | Test Conditions                                                                      | Min.  | Тур. | Max. | Units |
|-----------------------------|----------------------|--------------------------------------------------------------------------------------|-------|------|------|-------|
| Power Supply Voltage        | $V_{BB}$             | V <sub>BB</sub> = 75 V                                                               | 7 [2] | 48   | 75   | V     |
| VDD Cumply Current          | I <sub>BB1</sub>     | Standby, V <sub>IN</sub> > V <sub>INTH</sub> , V <sub>BB</sub> > V <sub>BBUVLO</sub> | _     | 6    | _    | mA    |
| VBB Supply Current          | I <sub>BB2</sub>     | V <sub>IN</sub> < V <sub>INTH</sub>                                                  | _     | 0.8  | 3.3  | mA    |
| VBIAS Output Voltage        | $V_{BIAS}$           | V <sub>BB</sub> > 13 V, I <sub>EXT_LOAD</sub> < 10 mA                                | 10    | 12.5 | 14   | V     |
| VREF                        | $V_{REF}$            | I <sub>EXT_LOAD</sub> < 5mA                                                          | 1.7   | 1.8  | 1.9  | V     |
| VREF Current Limit          | V <sub>REFOCL</sub>  | V <sub>REF</sub> = 0 V, internal current limit                                       | 70    | 92   | 135  | mA    |
| GATE DRIVER                 |                      |                                                                                      |       |      |      |       |
| High-Side Gate Drive Output | $V_{GH}$             | V <sub>BB</sub> = 48 V, DC                                                           | 9.3   | 11.8 | 13.3 | V     |
| Low-Side Gate Drive Output  | $V_{GL}$             | V <sub>BB</sub> = 48 V, DC                                                           | 10    | 12.5 | 14   | V     |
|                             |                      | PWMGDSLEWRATE = 0, DC, V <sub>GS_TH</sub> = 3 V                                      | 7     | 8.5  | 10   | mA    |
| Cata Daire Carras Commant   | *                    | PWMGDSLEWRATE = 1, DC, V <sub>GS_TH</sub> = 3 V                                      | 19    | 25.5 | 32   | mA    |
| Gate Drive Source Current   | $I_{SRC}$            | PWMGDSLEWRATE = 2, DC, V <sub>GS_TH</sub> = 3 V                                      | 31    | 42   | 53   | mA    |
|                             |                      | PWMGDSLEWRATE = 3, DC, V <sub>GS_TH</sub> = 3 V                                      | 48    | 63   | 78   | mA    |
|                             |                      | PWMGDSLEWRATE = 0, DC, V <sub>GS_TH</sub> = 3 V                                      | 16    | 23   | 30   | mA    |
| Gate Drive Sink Current     | *                    | PWMGDSLEWRATE = 1, DC, V <sub>GS TH</sub> = 3 V                                      | 33    | 46   | 60   | mA    |
|                             | $I_{SNK}$            | PWMGDSLEWRATE = 2, DC, V <sub>GS TH</sub> = 3 V                                      | 50    | 68   | 87   | mA    |
|                             |                      | PWMGDSLEWRATE = 3, DC, V <sub>GS TH</sub> = 3 V                                      | 50    | 68   | 87   | mA    |
| GHx Passive Pull-Down       | R <sub>GHPD</sub>    | V <sub>BB</sub> = 0, V <sub>GHx</sub> – V <sub>Sx</sub> < 0.1 V                      | 0.5   | _    | 2    | ΜΩ    |
| GLx Passive Pull-Down       | $R_{GLPD}$           | V <sub>BB</sub> = 0, V <sub>GLx</sub> – V <sub>LSS</sub> < 0.1 V                     | 0.5   | _    | 2    | ΜΩ    |
| PROTECTION CIRCUITS         |                      |                                                                                      |       |      |      |       |
| Lock Protection             | t <sub>OFF</sub>     | Relative to programmed target, ROTSTARTRETRYTOUT                                     | -10   | _    | 10   | %     |
| Overcurrent Limit           | I <sub>OCL</sub>     | Relative to programmed target,<br>SFOCDRVCURRLMT                                     | -15   | _    | 15   | %     |
| Thermal Shutdown Temp.      | T <sub>JTSD</sub>    | Temperature increasing                                                               | 145   | 160  | 175  | °C    |
| Thermal Shutdown Hysteresis | $\Delta T_{ m J}$    | Recovery = $T_{JTSD} - \Delta T_{J}$                                                 | _     | 20   | _    | °C    |
| VREF UVLO                   | V <sub>REFUVLO</sub> | V <sub>BIAS</sub> rising                                                             | 1.35  | 1.45 | 1.55 | V     |
| VBB Overvoltage             | V <sub>BBOVTH</sub>  | Relative to programmed target, OVP_TH                                                | -3    | _    | 3    | %     |
|                             |                      | V <sub>BB</sub> rising, UVSTH = 0                                                    | 29    | 30   | 32   | V     |
| VBB UVLO                    | $V_{BBUVLO}$         | V <sub>BB</sub> rising, UVSTH = 1                                                    | 23    | 24   | 25   | V     |
|                             |                      | V <sub>BB</sub> rising, UVSTH = 2                                                    | 6.2   | 6.7  | 7.5  | V     |

<sup>[1]</sup> Specified limits are tested at a single temperature and assured over operating temperature range by design and characterization.



 $<sup>^{[2]}</sup>$  When  $V_{BB}$  < 13 V, gate drive output voltage tracks  $V_{BB}$  voltage.

# 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **ELECTRICAL CHARACTERISTICS (cont.)** [1]: Valid at $T_J = 25$ °C, $V_{BB} = 48$ V (unless noted otherwise)

| Characteristics                         | Symbol              | Test Conditions         | Min. | Тур. | Max. | Units |
|-----------------------------------------|---------------------|-------------------------|------|------|------|-------|
| POWER LOSS BRAKE                        |                     |                         |      |      |      |       |
| V <sub>IN</sub> Logic Threshold         | V <sub>INTH</sub>   | V <sub>IN</sub> falling | _    | 2.7  | _    | V     |
| Hysteresis                              | V <sub>INHYS</sub>  |                         | _    | 500  | _    | mV    |
| V <sub>IN</sub> Pull-Down Resistor      | V <sub>INPD</sub>   |                         | _    | 870  | _    | kΩ    |
| V <sub>BB</sub> Regulated Boost Voltage | V <sub>BOOST</sub>  | $V_{IN} < V_{INTH}$     | 7.4  | 8.1  | 8.9  | V     |
| V <sub>BB</sub> Boost Low Threshold     | $V_{BBTH}$          |                         | _    | 1.1  | _    | V     |
| Boost Switching Frequency               | f <sub>BOOST</sub>  | Subject to change       | _    | 40   | _    | kHz   |
| LOGIC INPUTS AND OUTPUT                 |                     |                         |      |      |      |       |
| Logic Input Low Level                   | V <sub>IL</sub>     | nBRAKE                  | 0    | _    | 0.8  | V     |
| Logic Input High Level                  | V <sub>IH</sub>     | nBRAKE                  | 2    | _    | 6    | V     |
| Logic Input Hysteresis                  | V <sub>HYS</sub>    | nBRAKE                  | 200  | 300  | 600  | mV    |
| Logic Input Current                     | $I_{IN}$            | SPD, nBRAKE             | -10  | < 1  | 15   | μA    |
| Output Saturation Voltage (FG/RD, nFLT) | V <sub>SAT</sub>    | I = 1 mA                | _    | _    | 0.3  | V     |
| Output Leakage (FG/RD)                  | I <sub>O</sub>      | V = 12 V, switch OFF    | _    | _    | 5    | μA    |
| Output Leakage (nFLT)                   | I <sub>O</sub>      | V = 6 V, switch OFF     | _    | _    | 10   | μA    |
| INTERNAL OPEN-DRAIN PUL                 | L-UP                |                         | •    |      | •    |       |
|                                         |                     | FG/RD                   | 10   | 12.5 | 14   | V     |
| Internal Pull-Up Voltage                |                     | nFLT, nBRAKE            | 4.25 | 5    | 5.75 | V     |
|                                         |                     | PWM/SPD                 | 3.75 | 4    | 4.25 | V     |
| Internal Pull-Up Resistor               |                     | FG/RD                   | 12   | 20   | 28   | kΩ    |
| internal Full-Op Resistor               |                     | PWM/SPD, nFLT, nBRAKE   | 60   | 100  | 140  | kΩ    |
| I <sup>2</sup> C TIMING                 |                     |                         |      |      |      |       |
| SCL Clock Frequency                     | f <sub>CLK</sub>    |                         | 10   | _    | 400  | kHz   |
| Bus Free Time Between Stop/<br>Start    | t <sub>BUF</sub>    |                         | 1.3  | _    | _    | μs    |
| Hold Time Start Condition               | t <sub>HD:STA</sub> |                         | 0.6  | _    | _    | μs    |
| Setup Time for Start Condition          | t <sub>SU:STA</sub> |                         | 0.6  | _    | _    | μs    |
| SCL Low Time                            | t <sub>LOW</sub>    |                         | 1.3  | _    | _    | μs    |
| SCL High Time                           | t <sub>HIGH</sub>   |                         | 0.6  | _    | _    | μs    |
| Data Setup Time                         | t <sub>SU:DAT</sub> |                         | 100  | _    | _    | ns    |
| Data Hold Time                          | t <sub>HD:DAT</sub> |                         | 0    | _    | 900  | ns    |
| Setup Time for Stop Condition           | t <sub>su:sto</sub> |                         | 0.6  | _    | _    | ms    |



# 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **ELECTRICAL CHARACTERISTICS (cont.)** [1]: Valid at T<sub>J</sub> = 25°C, V<sub>BB</sub> = 48 V (unless noted otherwise)

| Characteristics                                                                                  | Symbol                | Test Conditions                           | Min. | Тур. | Max. | Units |
|--------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------|------|------|------|-------|
| SPEED CONTROL                                                                                    | •                     |                                           |      |      |      |       |
| PWM Duty Input, for PWM                                                                          | f <sub>PWM</sub>      |                                           | 0.1  | _    | 100  | kHz   |
| Duty Control Mode                                                                                | t <sub>PWM(LOW)</sub> | PWM low minimum pulse width               | 100  | _    | _    | ns    |
| Duty Cycle On Threshold                                                                          | DC <sub>ON</sub>      | Relative to programmed target             | -0.5 | _    | 0.5  | %     |
| Duty Cycle Off Threshold                                                                         | DC <sub>OFF</sub>     | Relative to programmed target             | -0.5 | _    | 0.5  | %     |
| Analog SPD Full-Range<br>Voltage, for Analog External<br>Command Source (Analog<br>Control Mode) | AnaSpd <sub>MAX</sub> | I <sub>LOAD</sub> = 10 μA                 | 0    | _    | 3.6  | V     |
| Analog SPD Resolution                                                                            |                       |                                           | _    | 1    | _    | mV    |
| Input Clock Frequency Range (Clock Mode)                                                         |                       | Relative to programmed target, CLKCOMPREF | 0.1  | -    | 1    | kHz   |
| Speed Setpoint (Digital, Not Clock Mode)                                                         | F <sub>SPD</sub>      | $R_{OSC} = 25 \text{ k}\Omega (0.1\%)$    | -2.5 | _    | 2.5  | %     |
| Speed Setpoint (Digital, Clock Mode)                                                             | F <sub>SPDClk</sub>   | PWM input frequency = CLKCOMPREF ±0.05%   | -0.1 | -    | 0.1  | %     |
| System Oscillator                                                                                | f <sub>OSC</sub>      | $R_{OSC} = 25 \text{ k}\Omega (0.1\%)$    | 24.5 | 25   | 25.5 | MHz   |
| ID CLOCK TIMING                                                                                  | •                     |                                           |      |      |      |       |
| Maximum ID Clock Time                                                                            | t <sub>idmax</sub>    | Relative to programmed target, FGIDDUR    | -10% | _    | 10%  | s     |
| ID Clock Frequency                                                                               | f <sub>idclk</sub>    | Relative to programmed target, FGIDFREQ   | -5%  | _    | 5%   | Hz    |
| V <sub>BB</sub> UVLO to ID Clock Delay                                                           | t <sub>dly1</sub>     | Relative to programmed target, FGIDFREQ   | _    | _    | 5%   | s     |
| PWM Rising Edge to End of ID Clock                                                               | t <sub>dly2</sub>     | Relative to programmed target, FGIDFREQ   | _    | _    | 5%   | s     |
| NONVOLATILE MEMORY (NV                                                                           | M) PROGRAM            | MING                                      | •    |      |      |       |
| Minimum V <sub>BB</sub> for Programming                                                          | V <sub>NVM_Prog</sub> | V <sub>BB</sub>                           | 25   | _    | _    | V     |



## 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **PIN DESCRIPTIONS**

### **VBB**

Main power supply for internal regulators. Tie the VBB pin to the GND pin using a low-equivalent series resistor (ESR) ceramic bypass capacitor of 0.1  $\mu$ F. This capacitor should be situated as close as possible to the VBB pin with a thick trace.

### VIN

The VIN input is used to sense the supply voltage for the powerloss braking (PLB) function. The PLB function becomes active if the voltage on this input reduces to less than  $V_{\rm INTH}$ . VIN must be connected to the power supply on the anode side of the blocking diode shown in Figure 1.

### **VREF**

Voltage reference (1.8 V) to power internal digital logic. A low-ESR ceramic capacitor with 4.7  $\mu F$  or greater is required on the pin to stabilize the supply. This regulator can supply up to 5 mA externally.

### **VBIAS**

Internal buck regulator output. Connected to external inductor and output capacitor. VBIAS provides supply current for gate drive, digital logic, bootstrap capacitors, and low-voltage analog circuitry. Up to 10 mA can be externally sourced from the VBIAS pin.

### SW

Buck regulator switching node connected to inductor and rectifier diode.

#### FG/RD

FG/RD is an open-drain output that can be pulled up to VBB externally. It also has by default an internal pullup to 12V that can be disabled through IPUP\_FGRD\_DIS parameter in NVM. The selection of function is programmed via NVM parameters as well to provide either speed (FG) or rotation detection (RD) data. For more information, refer to the FG/RD Pin Section.

The FG/RD pin is also used as a serial data (SDA) port in the I<sup>2</sup>C mode.

The I<sup>2</sup>C command can pass only when this pin is high (open drain).

### PWM/SPD

Device control demand input. Supports analog, PWM, or frequency command.

It also has, by default, an internal pullup to 4 V that can be disabled through IPUP\_PWMSPD\_DIS NVM parameter. The PWM/SPD pin is also used as SCK in the I<sup>2</sup>C mode.

#### **ROSC**

The ROSC terminal is used to improve the accuracy of the internal system clock for better accuracy control of motor speed. To use this feature, connection of a 0.1% 25 k $\Omega$  resistor between the ROSC terminal and GND is recommended. A 1% resistor can be used for applications where speed control accuracy is not critical.

### Sx

Load phase connections. These terminals are the negative supply connections for the floating high-side drivers and are also connected to the negative side of the bootstrap capacitors.

### Cx

High-side connections for the bootstrap capacitors and positive supply for high-side gate drivers.

#### **GHx**

High-side, gate-drive outputs for external N-channel MOSFETs.

### **GLx**

Low-side, gate-drive outputs for external N-channel MOSFETs.

### LSS

Low-side return path for discharge of the capacitance on the MOSFET gates, connected to the common sources of the low-side external MOSFETs through a low-impedance track.

#### SENN

Current sense negative terminal.

#### **SENP**

Current sense positive terminal.



### **nBRAKE**

This is the active low-input signal. It turns on all low sides for the braking function. The brake function overrides input control. Brake input is ignored during a thermal shutdown (TSD) event or if ( $V_{BB} > V_{OVP\_TH}$ ) or ( $V_{BB} < V_{BBUVLO}$ ). Care should be taken to avoid stressing the MOSFET when braking while the motor is running. When braking, the current is limited only by  $V_{BEMF} / R_{MOTOR}$ . The A89333 includes an optional feature that delays braking until the motor speed reduces to a level that is sufficiently low (configurable BRAKE\_FREQ\_TOO\_HIGH\_TH parameter in NVM) that the braking current does not damage the MOSFET.

The nBRAKE pin also has, by default, an internal pull-up to 5 V that can be disabled through the IPUP\_NBRAKE\_DIS parameter in NVM.

### nFLT

This open-drain output provides the fault status of the motor operation.

This pin is internally pulled up to 5 V by default. Pull-up can be disabled through NVM. The default is high when there is no fault. When a fault is detected, the nFLT pin transitions to low and remains active (low) until the fault is cleared according to the latched or not-latched mechanism.

The nFLT fault reporting function is enabled by default, but it can be disabled by selecting NFLT DIS = 1 in the NVM.

The nFLT feature can be used to indicate a successful software startup after POR by being low for a short period of time as detailed in Figure 2.

This feature can be enabled/disabled in the CONFIG register of the NVM using NFLT\_STARTUP\_DIS.

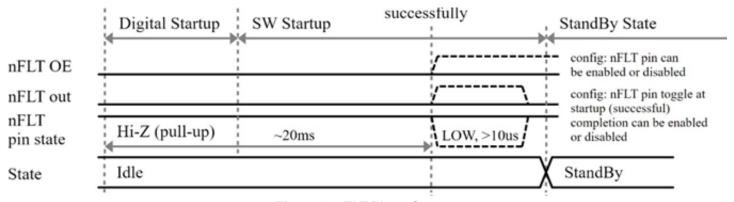



Figure 2: nFLT Pin at Startup



### **FUNCTIONAL DESCRIPTION**

The A89333 integrates a sensorless FOC algorithm using single-shunt resistance. The FOC algorithm implements a feedback current loop to control the current during dynamic load conditions, guaranteeing minimum torque ripple and maximum efficiency. The integrated buck converter allows it to operate from maximum  $V_{BB}$  with high efficiency and better thermal performance. The A89333 requires minimal external components thanks to the use of the single-shunt technique for current sensing and its advanced algorithm to reconstruct the current of each phase.

Allegro proprietary algorithms have been used to achieve high efficiency, fast start-up, and high dynamic response, minimizing acoustic noise in an easy-to use device.

The A89333 can be controlled through PWM, analog, or I<sup>2</sup>C, depending on the application, with an easy interface to the most common microcontroller.

The motor can be controlled in speed, torque, or power mode, with the FOC algorithm maintaining regulation in the presence of

load and supply voltage change.

The A89333 integrates advanced diagnostics to detect the internal/external power stage and motor faults. Faults are reported through a dedicated fault pin and the detailed diagnostic status of faults are available through the I<sup>2</sup>C register.

An internal nonvolatile memory (NVM) allows configuration of the motor parameters and the FOC algorithm. The basic FOC control algorithm of A89333 is shown in Figure 3.

### **Powerup and Initialization**

Upon power-up, the A89333 waits for the internal regulators to reach their UVLO levels, then loads the configuration data from the NVM into the internal registers. After the configuration is loaded, the A89333 is in the standby mode and is ready to respond to user input through the PWM/SPD pin or the I<sup>2</sup>C port, according to the external command source selected. (For more information, refer to the External Command Source section.)

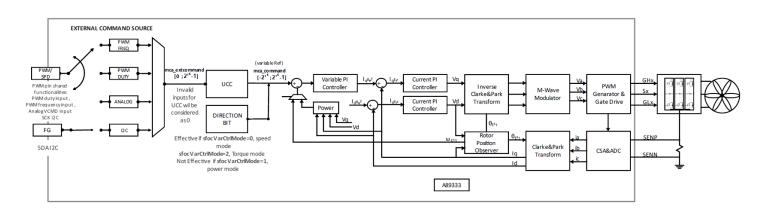



Figure 3: External Command Source and FOC Algorithm



## 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **External Command Source**

The A89333 can be controlled with five different sources of command according to the EXT\_CMD\_SRC in the NVM register setting.

### ANALOG INPUT VOLTAGE (EXT\_CMD\_SRC, 0X1).

Motor command is proportional to the analog voltage applied on the PWM/SPD pin.

Direction data, when available, is defined in the NVM and the UCC. For further information, refer to the Motor Rotation Direction section.

The analog command is converted into the digital domain and is rescaled according to:

Equation 1:

$$mca_{extcommand} = (2^{15} - 1) \times \frac{V_{PWM/SPD}}{AnaSpdMax}$$

where  $AnaSpd_{Max}$  is a fixed voltage equal to 3.6 V. For example, see Table 1.

### PWM DUTY CYCLE (EXT\_CMD\_SRC, 0X2)

Motor control is proportional to the duty cycle applied on the PWM/SPD pin. The frequency range of the input PWM is from 100 Hz to 100 kHz. There is a 100 ns minimum PWM low pulse limit with this mode, which means the IC cannot detect PWM low pulse less than 100 ns reliably and function correctly.

Direction data, when available, is defined in the NVM and the UCC. For further information, refer to the Motor Rotation Direction section.

The duty cycle command is converted into the digital domain according to:

Equation 2:

$$mca_{extcommand} = (2^{15} - 1) \times duty$$
.

For example, see Table 2.

In this mode, it is possible to enable the clock mode feature to synchronize the internal clock with the external PWM signal frequency. This can provide higher speed accuracy and can eliminate the need for a precision external resistor on the ROSC terminal. The external PWM signal is used to compensate for the inaccuracy of the integrated oscillator, allowing speed accuracy to be achieved down to 0.1%. When this feature is activated (CLK\_COMP\_ENABLE), the input admissible frequencies of the external PWM signal are fixed and need to be specified in the CLK\_COMP\_REF register. To detect the frequency, the input duty cycle of the PWM signal must be greater than 0% and less than 99%. If a 0% or 100% duty cycle value is applied, the clock compensation is not applied. Speed accuracy is directly related to the accuracy of the PWM clock frequency to the selected CLK\_COMP\_REF frequency.

Table 1: Conversion from Analog Input Voltage to Digital Command

| duty <sub>PWM/SPD</sub> (V) | mca <sub>extcommand</sub> (LSB)<br>AnaSpd <sub>Max</sub> = 3.6 V |
|-----------------------------|------------------------------------------------------------------|
| 0.5                         | 4551                                                             |
| 2.5                         | 22755                                                            |
| 3.6                         | 32767                                                            |

Table 2: Conversion from PWM Input Duty to Digital Command

| duty <sub>PWM/SPD</sub> (%) | mca <sub>extcommand</sub> (LSB) |
|-----------------------------|---------------------------------|
| 25                          | 8192                            |
| 50                          | 16384                           |
| 75                          | 24575                           |



### 48 V Sensorless Code-Free FOC BLDC Motor Controller

### FREQUENCY MODE (EXT\_CMD\_SRC, 0X3)

Motor control is proportional to the frequency applied on the PWM/SPD pin. The input frequency range needs to be between 44.5 and 2666 Hz (duty cycle is intended to be 50%, but this mode works with any setting other than 0 or 100%).

If PWM input frequency is greater than 2666 Hz, MCA\_EX\_COMMAND assumes the maximum value equal to 32767 [LSB]. If PWM input frequency is less than 44.5 Hz, MCA\_EXT\_COMMAND is equal to 0.

Direction data, when available, is defined in the NVM and the UCC. For further information, refer to the Motor Rotation Direction section.

The frequency command is converted into the digital domain according to:

#### Equation 3:

 $mca_{extcommand} = (pwm_{freq}[Hz] - 44.5) \times map_{coefficient}$ .

where map<sub>coefficient</sub> is a scaling factor equal to 12.496. For example, see Table 3.

Table 3: Conversion from PWM Input Duty to Digital Command

| frequency <sub>PWM/SPD</sub> (Hz) | mca <sub>extcommand</sub> (LSB) |
|-----------------------------------|---------------------------------|
| 44.5                              | 0                               |
| 100                               | (100 – 44.5) × 12.496 = 694     |
| 200                               | (200 – 44.5) × 12.496 = 1943    |
| 2666                              | (2666 – 44.5) × 12.496 = 32758  |

#### I<sup>2</sup>C MODE (EXT\_CMD\_SRC, 0X0)

The motor control speed reference command is defined by writing in the REF\_CMD register through I<sup>2</sup>C protocol. The I<sup>2</sup>C clock, SCK, is mapped on the PWM/SPD pin, and I<sup>2</sup>C data is mapped on the FG pin. In this mode, the motor electrical frequency can be read through the register, as well as many other internal parameters.

The value selected in REF\_CMD is copied into MCA\_EXT\_COMMAND. Direction data, when available, is defined in the NVM and UCC.

The A89333 can load a predefined command into the MCA\_EXT\_COMMAND register at power-up (POR) to start the motor without the need for an external command. The default command can be set in DEFAULT\_EXT\_CMD in the NVM and, at power-up, its value is copied into the MCA\_EXT\_COMMAND register. To disable this feature, DEFAULT\_EXT\_CMD must be set to 0.

The command is treated as speed, power, or torque, depending on the mode selected.

When FG is in the high state (not driven) or when the device has been configured in analog, PWM, or frequency external command source, I<sup>2</sup>C communication is always available.

I<sup>2</sup>C data is mapped on the FG pin and, because the pin is an open drain, it can be controlled by the I<sup>2</sup>C when in the high state. The internal NVM register, shadow NVM register, and status register can therefore be read and set during typical operation. However, for reliable communication, use of I<sup>2</sup>C is recommended when the A89333 is in the standby state (motor stopped).

NOTE 1: The internal NVM register and the shadow NVM register are inaccessible in application operation mode. They can be accessed only in user operation mode or in test operation mode. For more information, refer to the Operation Modes and Customer Password Protection section.

NOTE 2: The I<sup>2</sup>C SCK signal on the PWM/SPD pin is interpreted to be the maximum command. This is because, during serial transactions, the pin state is high, which is a valid command that is therefore interpreted as the maximum command.

For reliable communication, it is better to use serial communication in the UV mode to prevent issues related to motor start and proper FG/RD pin state.

For more information, refer to the VBB, UV, and NVM Reprogramming section.



### **Universal Curve Controller: UCC**

The MCA\_EXT\_COMMAND motor command is passed through a universal curve controller to create an arbitrary command profile, then to the FOC algorithm. The input of the UCC is unsigned(MCA\_EXT\_COMMAND [LSB]) and the output is signed(MCA\_EXT\_COMMAND [LSB]), as shown in Figure 4.

The UCC is a transformer curve defined by corner points. Each point has a specific input value and corresponding output value. Values between points are calculated using linear interpolation. Up to 10 corner points can be defined in NVM (UCC\_X0 to UCC\_Y9). Corner points do not all require definition—only as many as are needed for the desired curve.

A closed-loop nonoperational region, defined by the PO\_OPER parameter in the NVM, marked in the red hatched rectangular area in Figure 4, defines the minimum speed operation for reliable position-observer estimation and proper FOC functionality. Because operation in this area is not reliable, programming the UCC in this area is not recommended. The easiest way to prevent operation in this area is to use hysteresis, as shown in Figure 4.

Some examples of demand curves using screenshots taken from the GUI application follow.

Example 1: The default setting in which the output (Y axis) is same as the input (X axis) is shown in Figure 5. This curve can be used if the transformer is not needed.

Example 2: When the control loop is set to closed-loop speed, the example shown in Figure 6 can be used to avoid the resonant frequency of the motor, if needed.

Example 3: Hysteresis can be implemented by setting the input value of an address lower than the input value in the previous address. In this example shown in Figure 7, as the input demand rises, the output demand jumps to the next higher level at the vertical lines on the right of each transition. When the input demand falls, the output demand drops to the next lower level following the vertical lines on the left of each transition. This prevents output jitter when the input is around a boundary.

Example 4: In this example shown in Figure 8, the motor does not turn on until the input is approximately 23% and does not turn off until the output falls below about 20%. When the input is between about 90% to 96%, the output is at 10.6% (13002 rpm); when the input is greater than 96%, the motor stops.

Example 5: The curve can be used when bidirectional operation is required. In this case, when input is at 0%, the motor is at the selected maximum speed in the reverse direction; when the input is at 100%, the motor is at the maximum speed in the forward direction; and the motor is stopped when the input is approximately 50%. See Figure 9.

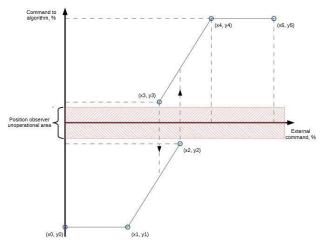



Figure 4: UCC Transfer Function from External Command to FOC Command

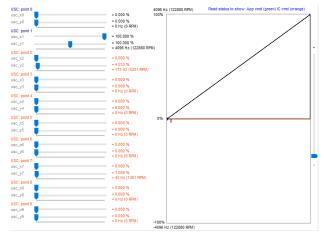



Figure 5: UCC Default Curve, Example 1

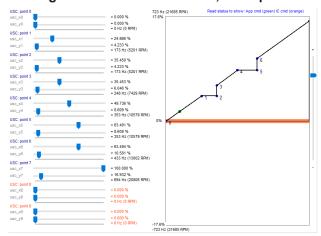



Figure 6: UCC Example 2



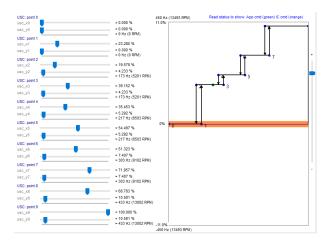



Figure 7: UCC Example 3

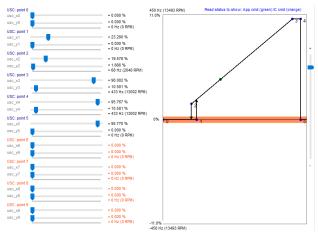



Figure 8: UCC Example 4

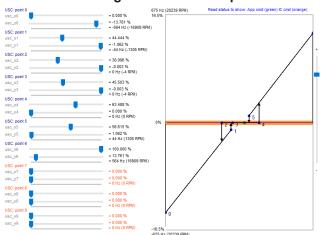



Figure 9: UCC Example 5

#### **Motor Rotation Direction**

Information about direction is decoupled from MCA\_COMMAND. As shown in Figure 3, the FOC algorithm has two inputs: direction and command.

The direction of the motor depends on:

- Direction bit in the REF\_CMD register, REF\_CMD[16]
- MSB of MCA COMMAND, MCA COMMAND[16]:
  - ☐ If the Y values of the UCC are all positive, then MCA\_COMMAND[16] = 0; otherwise, MCA\_COMMAND[16] = 1
- ROT DIR INVERT configurable NVM parameter
- Operation control mode (speed, power, torque mode, selected according to SFOC\_VAR\_CTRL\_MODE).

In speed control mode, motor direction is defined by:

 Motor direction = MCA\_COMMAND[16] XOR ROT DIR INVERT XOR REF CMD[16]

In torque and power control mode, motor direction is defined by:

- Motor direction= ROTDIRINVERT XOR REF CMD[16]
- For torque and power control mode, ensure MCA\_COMMAND[16] is 0 by setting Y values to all positive values.



### 48 V Sensorless Code-Free FOC BLDC Motor Controller

### Speed, Torque, or Power Control Modes

A89333 includes a control loop able to support three operational modes for motor control: speed, torque, and power. The control variable can be selected with the SFOC\_VAR\_CTRL\_MODE NVM register setting.

### Speed Mode (0x0)

In speed mode, MCA\_COMMAND is used as a reference for the FOC speed loop to regulate the motor speed to  $f_{ref}$  [Hz].

MCA\_COMMAND is scaled to the maximum frequency [Hz] according to the following formula:

Equation 4:

$$f_{ref}[W] = mca_{command}[LSB] \times \frac{f_{max}}{2^{15} - 1} \frac{[Hz]}{[LSB]}$$

### Torque Mode (0x2)

In torque mode, MCA\_COMMAND is used as reference for the FOC current loop to regulate the motor torque proportional to  $I_{ref}[A]$ .

In this mode, the FOC speed loop is bypassed and the reference command is compared directly with estimated q axis current, Iq<sub>ref</sub>.

MCA\_COMMAND is scaled to the maximum system current [A] according to:

Equation 5:

$$I_{ref}[W] = mca_{command}[LSB] \times \frac{i_{max}}{2^{15} - 1} \frac{[A]}{[LSB]}.$$

In torque control mode, MCA\_COMMAND is downscaled to the current fraction length (11 bits). For this reason, the FOC algorithm command changes only if the external command varies for more than 16 units.

### Power Mode (0x1)

In power mode, MCA\_COMMAND is used as a reference for the FOC power loop to regulate the motor power to  $P_{ref}[W]$ .

MCA\_COMMAND is scaled to the maximum system power [W] according to:

Equation 6:

$$P_{ref}[W] = mca_{command}[LSB] \times \frac{P_{max}}{2^{15} - 1} \frac{[W]}{[LSB]}$$

In power control mode, the command is down-scaled to the voltage fraction length (14 bits) and, for that reason, the FOC algorithm command changes only if the external command varies for more than 2 units.

### **Maximum System Speed**

The maximum system speed  $(f_{max} [Hz])$  is the maximum electrical motor speed that can be commanded. It depends on frequency resolution,  $f_{res}$ , according to:

Equation 7:

$$f_{max} = round(2^{15} \times f_{res})$$

where  $f_{res}$  [Hz/LSB] is the frequency resolution, set through the SFOC FREQ RES register according to:

Equation 8:

$$f_{res} = \frac{1}{9 \times 2^{sfocFreqRes}} \frac{[Hz]}{[LSB]}.$$

NOTE: The maximum rotation speed can be limited by supply voltage ( $V_{BB}$ ); therefore, high command speed may not result in high motor rotation due to low  $V_{BB}$  voltage.

### Maximum System Current and Bus Current Sensing

The maximum system current is typically set to 110% of the motor-rated current.

A single shunt resistor connecting between SENN and SENP is used to measure the bus current for the FOC algorithm and current limit. The resistor value is typically approximately tens of milliohms, depending on the maximum rated current of the system and the selected gain of the current sense amplifier.

Equation 9:

$$i_{max}[A] = \frac{ADC_{VREF}}{R_{Shumt} \times CSA_{GAIN}},$$

where ADC  $_{\rm VREF}$  is the reference ADC voltage equal to 1.2 V,  $R_{\rm shunt} \left[\Omega\right]$  is the board shunt resistance, and  ${\rm CSA}_{\rm GAIN}$  is the sense amplifier gain that can be set in the SFOC\_CSA\_GAIN NVM parameter to 10 V/V or 20 V/V.

Use of a Kelvin sensing connection is recommended when using the shunt resistor, as shown in Figure 10.

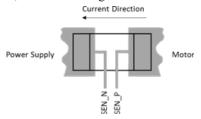



Figure 10: Kelvin Sensing Connection Recommended for Shunt Resistor Setups

# 48 V Sensorless Code-Free FOC BLDC Motor Controller

### **DC-Link Voltage**

To enable proper controller operation, set the nominal DC-link voltage in the VBB NOM NVM parameter according to:

Equation 10:

$$VBB_{nom} = round \left( \frac{VBB_{nom}[V]}{0.515625} \right),$$

where  $VBB_{nom}$  [V] is the nominal DC-link voltage and 0.515625 [V] is the scaling factor.

NOTE: Proper functioning of the A89333 requires that the nominal VBB used to power the device is correctly configured in the VBB\_NOM NVM.

### **Maximum Electrical Power**

The maximum electrical power value [W] is calculated using:

Equation 11:

$$Pmax[W] = \frac{3}{2}i_{max}1.1547 \frac{VBB_{nom}[V]}{2}.$$

For example, with maximum system current,  $I_{Max}$  , of 6.25 A and  $VBB_{nom}$  of 12 V, the maximum electrical power is 64.95 W.

#### **SPEED LIMIT**

The SFOC\_FREQ\_LMT NVM parameter limits the maximum rotation speed. It works for all speed, torque, and power, and it is normally used in power and torque modes.

### **POWER LIMIT**

The SFOC\_PWR\_LMT parameter in NVM limits the maximum power. This parameter is useful when commanding in torque and speed modes.

#### **CURRENT LIMIT**

The SFOC\_DRV\_CURR\_DRV\_LMT parameter in NVM limits the Iq, which subsequently limits the I<sub>BB</sub>. This parameter is useful when commanding in power and speed modes.

### Motor Control Application (MCA) Finite State Machine (FSM)

A89333 implements the FOC algorithm through a state machine, composed of four modes and six distinct states. The four modes of the MCA (motor controller application) are:

- 1. Standby Mode—This mode is activated after completion of the system startup routine or receipt of the command to stop motor driving (motor control application FSM enters SBY state, as described next).
- 2. Rotate Mode—This mode is activated when a command to start the motor is received (on exit from the SBY state).
- 3. Brake Mode—This mode is activated when a command to brake the motor is received.
- 4. Fail Mode—This mode is activated when one of the enabled faults is detected. Active fail mode is reported by activation of the nFLT pin.

The active mode of MCA can be read in the SW status register via I<sup>2</sup>C communication.

The distinct states of the MCA FSM are shown in Figure 11:

- A89333 powers up in the standby state (SBY) with external power bridge in tri-state mode.
- After the internal initialization is complete and once a command to run the motor is received, the A89333 transitions to the windmill check state (WNDML) to determine the initial status of motor movement and then start to drive the motor as shown in Figure 11.
- If the motor is stationary or spinning at a very low speed that
  is considered to be stationary (typical startup), the A89333
  enters the IPD state or the align state—depending on the NVM
  option (ALIGN\_TYPE) to determine the initial rotor position
  or to put rotor into a known position—followed by the openloop ramp-up (RAMPUP) and drive states.
- If the motor spins in the reverse direction (reverse windmill), braking (BRAKE mode) or deceleration with FOC control is applied to stop the motor.
- Once the motor stops, the typical startup routine can be applied as before.
- If the motor is already rotating in the correct direction (forward windmill), depending on the NVM option (described in the Windmilling—WNDML section), the driver can enter the drive state directly, skipping the IPD/align state and the ramp-up phase, or braking/FOC deceleration can be used to stop the motor, such as the reverse windmill, followed by typical startup.

The active state of the MCA can be read in the SW status register via I<sup>2</sup>C communication.



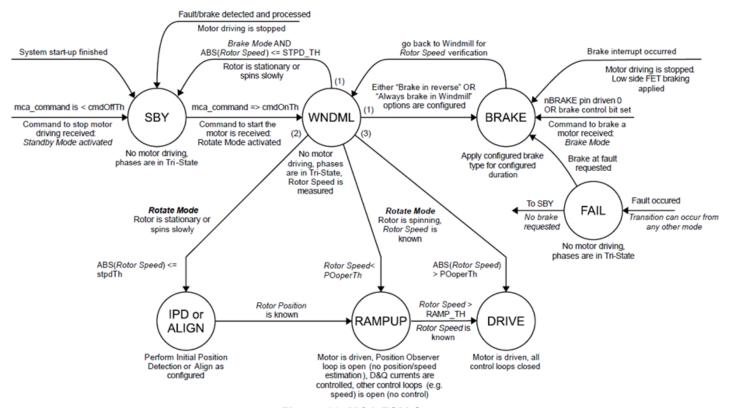



Figure 11: MCA FSM States

#### STANDBY—SBY

In the SBY state, the motor is not driven, and the power stage is in tri-state, so the motor can be externally rotated.

The A89333 transitions to the windmill (WNDML) state only when MCA\_COMMAND exceeds the command on threshold of CMD\_ON\_TH and returns to standby when MCA\_COMMAND is less than the command off threshold of CMD\_OFF\_TH.

The A89333 enters standby mode when one of the following conditions is verified:

- After completion of the system startup routine.
- At any point in time (independently, based on current state) after a fault is processed in the fail state.
- In brake mode, after the rotor successfully stops.
- If MCA\_COMMAND reduces to less than CMD\_OFF\_TH. This is the procedure for commanding the motor to stop.

#### WINDMILLING—WNDML

In this state, the motor is not driven; however, the back electromagnetic force (BEMF) signals from the windings of the motor is analyzed to determine the rotation speed of the motor, the position of the rotor, and the direction of movement.

Based on the rotor speed measurement, the state machine reacts as follows:

- If the motor speed is less than the stopped threshold (STPD\_TH, NVM parameter) or if an illegal switching sequence is detected, the device enters initial position detection (IPD) or rotor alignment (ALIGN) to determine the rotor position.
- If motor rotation exceeds the stopped threshold (STPD\_TH) and:
  - □ Motor rotation is in the proper direction:
    - ◆ If the brake is enabled during the windmill state (BRAKE\_IN\_WNDML\_ALWAYS\_EN = 1, NVM parameter), the device enters the BRAKE state to reduce speed. The brake pattern is applied until the rotor is stationary. When speed is less than STPD\_TH, the device enters the standby state.



# 48 V Sensorless Code-Free FOC BLDC Motor Controller

- ♦ If the brake is not enabled during the windmill state, the device enters the drive or ramp-up state, depending on the absolute value of the speed value with respect to the observer operational threshold (PO\_OPER, configurable NVM parameter).
- □ Motor rotation is in the improper direction:
  - ♦ If the brake is enabled in the windmill state (BRAKE\_IN\_WNDML\_ALWAYS\_EN = 1 or BRAKE\_IN\_REVERSE\_TYPE = 1), the device enters the brake state to reduce speed. From the brake state, the device returns to the windmill state to verify the speed condition. When the speed is less than STPD\_TH, the device enters the standby state.
  - ♦ If the brake is not enabled in the windmill state, the motor is decelerated by FOC. Once it stops, it restarts in the opposite direction.

#### **IPD AND ALIGN**

The startup of a motor from stationary requires a known rotor position. A89333 supports both initial position detection (IPD) and alignment techniques.

- IPD (ALIGN\_TYPE = 1, configurable NVM parameter), initial rotor position is determined by measuring the stator inductance difference caused by rotor flux. The IPD technique offers smoother and faster startup, without reverse spinning by using salient characteristics and winding saturation characteristics to determine the rotor position. IPD is performed in two stages:
  - $\ \square$  In the first stage, test-pulse sequences are applied to the motor. If there is sufficient saliency ( $L_q \neq L_d$ ), A89333 locks the rotor position within 30° of 0° to 180° or 180° to 360°.
  - □ When the first stage completes, A89333 applies a test sequence that uses the saturation property of the phase inductances of the motor to determine the current magnetic polarity of the rotor. Once the entire sequences complete, A89333 can determine the rotor angle within 30° accuracy.
- Align mode (ALIGN\_TYPE = 0). A89333 supports both AC and DC alignment.
  - □ DC alignment is enabled by configuring SFOC\_ACDC\_ALIGN\_TYPE = 0. A DC current is injected for a fixed length of time that is configured by the SFOC\_ALGN\_TIME parameter, such that the rotor aligns with the stator in a known position. The current limit during DC alignments is configured through the SFOC\_ALGN\_D\_CURR\_REF parameter. The

- SFOC\_ALGN\_TIME and SFOC\_ALGN\_D\_CURR\_REF parameters are generally related to the inertia of the system, and it is advisable to increase these two parameters if the inertia is large or if a load is applied on the shaft.
- □ AC alignment is enabled by configuring

  SFOC\_ACDC\_ALIGN\_TYPE = 1. A low-currentcontrolled driving frequency is applied to the winding to
  generate a known-position flux in the rotor. The integrated
  permanent magnet rotor gravitates to the generated stator
  flux. The AC alignment mode spins the rotor in openloop control mode for the configured amount of time
  (ALGN\_DUR, SFOC\_ALGN\_TIME) with constant
  frequency (AC\_ALGN\_FREQ, 1/ALGN\_DUR) and current
  reference (SFOC\_ALGN\_D\_CURR\_REF). The alignment
  period should be chosen to match with the load torque
  required to gravitate the rotor. Longer alignment periods are
  more likely to catch the rotor than shorter alignment periods.

In align mode, the rotor may oscillate for some time before it starts to accelerate. This mode is typically used when the rotor position cannot be detected by the IPD. It is also a default action if the IPD fails to detect the initial rotor position (IPD FAIL ACTION).

After alignment or IPD completes, the FOC algorithm assumes that the rotor is stationary and is in the expected position, and the device enters the ramp-up state.

#### RAMP-UP—RAMPUP

During ramp-up, the driving frequency increases in open-loop mode until sufficient BEMF is generated to allow the observer to accurately detect the rotor speed and position for the transition into the closed-loop state (drive state).

Open-loop ramp-up increases rotor frequency up to RAMP UP FREQ based on the following parameters:

- SFOC\_RAMP\_TIME, which defines the length of the ramp-up phase.
- SFOC\_RAMP\_STEP, which defines the acceleration [freq/s] during the ramp-up phase only.
- SFOC\_RUP\_D\_CURR\_REF, which defines the current during ramp-up. Ramp-up speed is not affected by the value of the current. The appropriate current level depends on the properties of the motor and the connected load.

The choice of SFOC\_RAMP\_STEP and SFOC\_RAMP\_TIME affects the frequency of occurrences of transitions between open-loop and closed-loop states.



## 48 V Sensorless Code-Free FOC BLDC Motor Controller

For reliable start-up, an OL-CL transition frequency greater than 35 Hz is advised. This is achieved by selecting: 1) a RAMP\_STEP value that is not excessively large, to allow use of a current equal to 60% of the rated current; and 2) a RAMP\_TIME that is not excessively small.

Motors with larger inertia typically require smaller SFOC RAMP STEP and longer SFOC RAMP TIME.

For fast start-up with minimized start time, the ramp-up time in the open-loop state must be minimized. This may require an OL-CL transition frequency of less than 35 Hz at the expense of reliability. In addition, the value of RAMP\_STEP must be increased, the value of the current to start the motor must be increased to the value of 80% to 100% of the nominal current, and the RAMP\_TIME value must be reduced.

Generally, fast start-up demands high current.

#### **DRIVE—DRIVE**

In the drive state the motor spins using a sensorless field-oriented control (SFOC) technique.

In sensorless operation, the motor angle and speed are estimated based on the motor electrical model (inductance, resistance) and the voltage and current that are applied.

In the drive state, the current can be further controlled and limited by the following parameters:

- SFOC\_DRV\_CURR\_DRV\_LMT sets the maximum current driving capability of the Q axis.
- SFOC\_DRV\_CURR\_RATE\_LMT and SFOC\_DWN\_CURR\_RATE\_LIMIT limit the rate of growth and decrease of the current on the Q axis.

To prevent sudden changes in the torque applied to the motor, which could result in acoustic noise, the A89333 provides the option to limit the maximum rate of change of the speed command by using the SFOC\_REF\_RATE\_LMT parameter.

### **REGENERATIVE MODE**

In case of strong deceleration, the motor can operate as a generator and transfer energy back to the power. If the power supply is not able to absorb the energy,  $V_{BB}$  voltage is increased [pumped up; PUP], with the potential to damage the system.

The A89333 can limit the  $V_{BB}$  pump-up using the SFOC\_VBB\_LMT and SFOC\_VBB\_LMT\_TH parameters. Alternatively, the Iq regenerative current can be limited using the SFOC\_CURR\_GEN\_LMT and SFOC\_GEN\_CURR\_RATE\_LMT parameters.

#### **BRAKE—BRAKE**

Brake mode enables rapid motor shutdown, when desired. During braking, the three low-side drivers—connecting the three motor terminals together and short the motor BEMF—are enabled. In brake mode, the current of the winding is limited only by the motor and the resistance of the external FETs. Because of this, care must be taken to avoid excessive current in the FETs when braking. Several configuration options are available for programming in the NVM to allow for safe braking, such as pulsed braking and braking hold-off based on motor frequency.

In the brake state, the device activates the low-side MOSFET, braking the motor according to these parameters:

- BRAKE\_FET\_ON\_DURATION
- BRAKE\_FET\_OFF\_DURATION

If motor speed exceeds BRAKE\_FREQ\_TOO\_HIGH\_TH, the motor coasts before the brake is activated. This prevents generation of excessively high current that could damage the MOSFET or the motor.

The device enters the brake state when one of these conditions is verified:

- Pin nBRAKE is driven low.
- Brake bit is set in the BRAKE\_CTRL register.
- Windmill state is active and a braking feature is required, as described in the Windmilling—WNDML section.
- Speed command MCA\_COMMAND is less than CMD\_OFF\_TH and BRAKE\_IF\_OFF\_EN = 1. If BRAKE\_IF\_OFF\_EN = 0, the device enters the standby state and the motor coasts.

If BRAKE\_IF\_OFF\_EN = 1, the device also keeps the motor braked (low-side MOSFET on) after the motor stops.

NOTE: If SOFT\_OFF\_EN is set, the motor can be decelerated in the closed-loop state (drive state). For more information about soft deceleration of the motor, refer to the APEK89333 user manual available on the Allegro website.

### **FOC Algorithm Speed and Current Loop**

In speed mode, the command from MCA\_COMMAND is used as a reference set point to the speed loop, and the output of the speed loop is used as the reference for the Q-axis current in the current loop.

In torque mode, the command from MCA\_COMMAND is passed directly to the current loop as the reference for the Q-axis current.



### 48 V Sensorless Code-Free FOC BLDC Motor Controller

The reference for the D-axis current can be set using the register SFOC\_DRV\_D\_CURR\_REF; however—to ensure that the stator and rotor field are 90° out of phase with each other, which allows for the maximum available torque and system efficiency—the recommended setting is zero.

PI controllers, one for speed and one for current loop, can be tuned using SFOC\_D\_CURR\_KP, SFOC\_D\_CURR\_KI, SFOC\_Q\_CURR\_KP, and SFOC\_Q\_CURR\_KI NVM settings.

The A89333 integrates a space-vector modulation (SVM) technique that optimizes use of the supply voltage and increases the base motor speed. The algorithm also implements a  $V_{BB}$  compensation feature that automatically adjusts the duty cycle to correct disturbances or sudden voltage variations on the supply voltage. The system works as a percentage of the nominal  $V_{BB}$  (VBB\_NOM NVM parameter) and calculates the duty cycle,  $\delta,$  for phase voltages according to:

Equation 12:

$$\delta = \frac{V_{phase}}{VBB_{measured}(\%) \times VBB_{nom}}$$

### Example 1:

 $VBB_{nom} = 12 V$ 

 $v_{phase}$  calculated from FOC algorithm is 50% of  $v_{phase}$  VBB<sub>measured</sub> from ADC = 12 V, so it is 100% of VBB<sub>nom</sub> Calculation of  $\delta$ :

Equation 13:

$$\delta = \frac{V_{phase}}{VBB_{measured}(\%) \times VBB_{nom}}$$

$$= \frac{50\% \ VBB_{nom}}{100\% \times VBB_{nom}}$$

$$= 50\%$$

#### Example 2:

 $VBB_{nom} = 12 V$ 

 $v_{phase}$  calculated from FOC algorithm is 50% of  $VBB_{nom}$   $VBB_{measured}$  from ADC = 6 V, so it is 50% of  $VBB_{nom}$  Calculation of  $\delta$ :

Equation 14:

$$\delta = \frac{V_{phase}}{VBB_{measured}(\%_0) \times VBB_{nom}}$$

$$= \frac{50\% \ VBB_{nom}}{50\% \times VBB_{nom}}$$

$$= 100\%$$

The compensation of  $V_{BB}$  is guaranteed until  $V_{BB}$  measured is less than  $2\times VBB_{nom}.$ 

#### **OBSERVER**

For sensorless-mode operation, the motor angle and speed data are estimated in the observer block—without the need for an external sensor.

The machine parameters required in the A89333 observer are the motor phase inductance, sfocLs, and the motor phase resistance, sfocRs, according to:

Equation 15:

$$\mathbf{sfocLs} = round \left( \frac{2\pi \times i_{max} \times f_{res} \times motorLs \times 2^{(sfocLsFl+21)}}{0.298 \times VBB_{nom}} \right),$$

where:

- sfocLs [unitless] is the stator inductance NVM setting.
- $i_{max}[A]$  is the maximum system current.
- $f_{res} = \frac{1}{9 \times 2^{sfocFreqRes}} [Hz/LSB]$  is the frequency resolution.
- motorLs [H] is the motor phase to neutral inductance (phase-to-phase/2).
- sfocLsFl [unitless] is the SFOC stator inductance fractional length NVM setting (signed).
- VBB<sub>nom</sub> [V] is the nominal DC link voltage (should be in alignment with VBB NOM setting).

Equation 16:

$$\mathbf{sfocRs} = round \left( \frac{motorRs \times i_{max} \times 2^{(sfocRsFl+11)}}{0.298 \times VBB_{nom}} \right)$$

where:

- sfocRs [unitless] is the stator resistance NVM setting.
- $i_{max}[A]$  is the maximum system current.
- motorRs  $[\Omega]$  is the motor phase to neutral resistance (phase-to-phase/2).
- sfocRsFl [unitless] is the SFOC stator inductance fractional length NVM setting (signed).
- VBB<sub>nom</sub> [V] is the nominal DC link voltage (should be in alignment with VBB NOM setting).

Proper functioning of the observer requires proper tuning of the controller parameters SFOC\_PO\_FREQ\_K and SFOC\_PO\_THETA\_K.



### DIAGNOSTIC AND PROTECTION FEATURES

A89333 integrates advanced diagnostics for critical hardware protection and motor control diagnostics. Hardware protections include overvoltage, undervoltage, over temperature, and short-circuit protection. Motor control diagnostics include lock detection (loss of sync) and no-motor start.

If a fault event occurs, the nFLT pin is pulled low to indicate a fault condition. The nFLT pin can also be connected to the nBRAKE pin to brake the motor in case of an overcurrent fault. Braking is not allowed for the OVP, UV, OT, and lock detection states.

Every fault can be enabled or disabled (masked) using the NVM parameters UVS\_DISABLE, OVT\_DISABLE, OVP\_ENABLE, OCP\_ENABLE, ROT\_STALL\_DET\_CTR = 0, and NO\_MOTOR\_START\_EN.

Fault data flags can be read in the SW status register via I<sup>2</sup>C communication.

**Table 4: Fault Table** 

| Fault                                                     | Fault Action                                                             | Latched            |
|-----------------------------------------------------------|--------------------------------------------------------------------------|--------------------|
| V <sub>BB</sub><br>Undervoltage                           | Disable outputs                                                          | N                  |
| Over Temp.<br>Protection                                  | Disable outputs                                                          | N                  |
| V <sub>BB</sub><br>Overvoltage<br>Protection<br>(VBB OVP) | Disable outputs                                                          | Z                  |
| Overcurrent<br>Protection<br>(OCP)                        | Disable outputs Latch reset with command off/ on sequence or power-cycle | Y                  |
| Loss of Sync<br>(Lock Det)                                | Set lock detect timeout—<br>disable outputs                              | (SW latched fault) |
| No-Motor Start                                            | Set lock detect timeout—<br>disable outputs                              | (SW latched fault) |

#### VBB UNDERVOLTAGE—VBB UVS

When digital logic is running and the supply voltage on the VBB pin reduces to less than the UVS\_TH, the A89333 disables the outputs until the supply voltage reduces to less than the operating threshold, which is lower than the  $V_{BBUVLO}$  threshold.

After the  $V_{BB}$  undervoltage is detected, the outputs are disabled, the controller enters the fail mode, and fault reporting is performed by pulling low the nFLT pin and setting the corresponding fault flag in the SW status register. When the  $V_{BB}$  level rises to greater than UVS\_TH (plus the hysteresis level), the outputs are re-enabled automatically (not latched), the fault flag is cleared, and the controller transitions to the standby mode and state. In the standby state, the controller verifies that the command exceeds the threshold of CMD\_ON\_TH, then transitions to the windmill state, where a speed check is performed and used by the device to determine if the start is from a stationary position or with a moving rotor.

The  $V_{BB}$  undervoltage protection level is programmable in NVM using the UVS\_TH parameter (see Table 5). The  $V_{BB}$  undervoltage diagnostic is independently activated by the control method and state. If needed, the fault can be masked using the UVS\_DISABLE parameter in NVM.

Table 5: UVS\_TH Parameter

| UVS_TH | V <sub>BB</sub> UVS (V) |
|--------|-------------------------|
| 0      | 32                      |
| 1      | 25                      |
| 2      | 7                       |

### **VBB, UV, AND NVM REPROGRAMMING**

When the device is in an undervoltage (UV) state but the  $V_{BB}$  exceeds the operating threshold of the supply voltage for digital logic, if in user mode, it is possible to reprogram the NVM (EEPROM) registers regardless of the selected external command source and the state of the FG pin. Changes to NVM take effect only after POR.

The UV condition prevents incorrect transactions that can result from FG/RD pin toggling and guarantees that the FG/RD pin is in the proper state for  $\rm I^2C$  for any NVM configuration. To program the EEPROM, increase  $\rm V_{BB}$  beyond 25 V after  $\rm I^2C$  communication is established.

If the FG/RD pin configuration cannot cause toggling (FG/RD pin is in the high state), it is possible to use I<sup>2</sup>C without UV and the EXT\_CMD\_SRC is not I<sup>2</sup>C. This allows NVM shadow programming when in user mode or SW status register consultation for diagnostic purposes. In this case, serial communication should be performed when the controller is in the standby state (motor stopped), and it can lead to unexpected motor starts.



#### OVERTEMPERATURE PROTECTION—OVT/TSD

The A89333 protects itself from overheating with an internal thermal monitoring circuit. If the junction temperature exceeds the upper threshold  $T_{J\_TSD}$ , when the OVT is detected, the outputs are disabled, the controller enters the fail mode, and fault reporting is performed by pulling low the nFLT pin and setting the corresponding fault flag in the SW status register.

When device temperature returns to less than the  $T_{J\_TSD}$  threshold minus the hysteresis level,  $\Delta T_J$ , the outputs are re-enabled automatically (not latched), the fault flag is cleared, and the controller transitions to the standby mode and state. In the standby state, the controller verifies that the command exceeds the threshold of CMD\_ON\_TH, then transitions to the windmill state, where a speed check is performed and used for the device to determine if the start is from a stationary position or with a moving rotor.

The over-temperature protection diagnostic is independently activated by the control method and state. If not needed, the fault can be masked using the OVT\_DISABLE parameter in NVM.

#### VBB OVERVOLTAGE PROTECTION—VBB OVP

Overvoltage protection is intended to protect the IC and the three-phase inverter in applications where the motor could be rotated at high velocity or where quick decelerations of motor speed are needed, which can result in significant energy fed back from motor coils to the power supply. Overvoltage could also be relevant when low-side FET braking is applied; because the A89333 switches the low-side FETs during braking, during the off time ( $t_{\rm off}$ ) the voltage generated on the inductors of the motor force the current to flow in the body diode of the high-side FETs, charging the capacity of the DC-link and generating a pump-up of  $V_{\rm BB}$ .

When V<sub>BB</sub> voltage exceeds OVP\_TH, A89333 disables the outputs. After the V<sub>BB</sub> overvoltage is detected, the outputs are disabled, the controller enters the fail mode, and fault reporting is performed by pulling low the nFLT pin and setting the corresponding fault flag in the SW status register. When the V<sub>BB</sub> level reduces to less than the OVP\_TH, the outputs are re-enabled automatically (not latched), the fault flag is cleared, and the controller transitions to the standby mode and state. In the standby state, the controller verifies that the command exceeds the threshold of CMD\_ON\_TH, then transitions to the windmill state, where a speed check is performed and used by the device to determine if the start is from a stationary position or with a moving rotor.

The  $V_{BB}$  overvoltage protection level is programmable using the OVP\_TH parameter in NVM, in the range of approximately 0 V to 75 V. The  $V_{BB}$  overvoltage diagnostic is independently activated by the control method and state. If needed, the fault can

be masked using the OVP EN parameter in NVM.

### OVERCURRENT PROTECTION—OCP (SHORT PROTECTION)

Overcurrent protection is intended to protect the power FETs from application conditions of shorted load, motor short to ground, and motor short to battery that can damage the system.

The  $V_{DS}$  voltages across each power MOSFET are monitored by the A89333. If any  $V_{DS}$  exceeds a predefined threshold (OCP\_TH), when the corresponding MOSFET is in the conduction mode (turned ON), an OCP fault is triggered and the output becomes disabled.

| OCP_TH | V <sub>DS</sub> Threshold (V) |
|--------|-------------------------------|
| 0      | 0.5                           |
| 1      | 0.75                          |
| 2      | 1.0                           |
| 3      | 1.5                           |

The  $V_{DS}$  threshold needs to be set as a function of the MOSFET  $(R_{DSON})$  and to the maximum current that can be driven.

In case of a fault, the nFLT pin is pulled low, the fault flag is set in the SW status registers, and the output motor coasts (output disabled) or brakes using the low-side FETs (if the nFLT pin is connected to the nBRAKE pin). After braking completes (command off received; command is less than CMD\_OFF\_TH), a restart can be performed.

If braking is not configured, the bridge remains off and the restart procedure can be performed after the off command (the command is less than CMD\_OFF\_TH) is received.

Overcurrent protection (OCP) is a latched event and the output remains off until an off/on cycle command is received or the device is power-cycled.

OCP is independently activated by the control method and state. If not needed, the fault can be masked using the OCP\_ENABLE parameter in NVM.

### LOSS OF SYNC (LOCK/STALL DETECTION)

A89333 implements three stall detection mechanism selected by the ROT STALL DET CTRL parameter in NVM:

- Frequency estimation: The rotation frequency estimated by the observer, f<sub>est</sub>, is compared to the predefined threshold configured in the ROT\_STALL\_TOO\_LOW\_SPEED\_TH. When abs(f<sub>est</sub>) < ROT\_STALL\_TOO\_LOW\_SPEED\_TH, the stall state is detected immediately.
- V<sub>q</sub> estimation: The estimated V<sub>q</sub> is compared to a



range defined by ROT\_STALL\_DET\_HIGH\_TH and ROT\_STALL\_DET\_LOW\_TH. If the estimated  $V_q < ROT_STALL_DET_LOW_TH$  or  $V_q > ROT_STALL_DET_HIGH_TH$  for a duration exceeding ROT\_STALL\_DET\_TIME\_TH, the stall state is detected. For this estimate, the values of the motor phase resistance (SFOC\_RS) and the motor BEMF constant (SFOC\_KE) must be set. The motor BEMF constant (SFOC\_KE) is set according to:

Equation 17:

$$\mathbf{sfocKe} = round \left( \frac{2\pi \times f_{res} \times motorKe \times 2^{(4+(8+\mathbf{sfocKeFI}))}}{0.298 \times VBB_{nom}} \right)$$

where:

- □ sfocKe [unitless] is the motor BEMF NVM setting.
- $\Box$   $i_{max}[A]$  is the maximum system current.

$$f_{res} = \frac{1}{9 \times 2^{sfocFreqRes}} [Hz/LSB]$$
 is the frequency resolution.

- $\Box$  motorKe [V/(rad/s)] is the motor BEMF constant.
- □ sfocKeFl [unitless] is the SFOC stator inductance fractional length NVM setting (signed).
- $\ \square$  VBB<sub>nom</sub> is the nominal DC link voltage (should be in alignment with the VBBNOM setting).
- BEMF estimation: The estimated BEMF is compared to the predefined threshold in ROT\_STALL\_TOO\_LOW\_V\_BEMF\_TH. If abs(bemf) < abs(threshold), the stall state is detected immediately. The greater the value of ROT\_STALL\_TOO\_LOW\_VBEMF\_TH, the faster the BEMF stall detection feature will detect the stall; however, the chances of a false stall detection increase.

After the first rotor stall is detected, the outputs are disabled, the controller enters the fail mode, and the fault is reported, pulling low the nFLT pin and setting the corresponding fault flag in the SW status register. The controller remains in the fail mode until the stall condition is absent, including during retries. Once the rotor is stalled, the controller tries to restart the motor for a total number of attempts set by ROT\_START\_RETRY\_MAX\_ATTEMPTS, with a delay of ROT\_STALL\_RETRY\_T\_OUT between each retry.

If the rotor is no longer in the stall state during the retries, the outputs are re-enabled automatically, the fault flag is cleared (not latched), and the controller transitions to the standby mode and

state. In the standby state, the controller verifies that the command exceeds the threshold of the CMD\_ON\_TH parameter, then transitions to the windmill state, where a speed check is performed and used by the device to determine if the start is from a stationary position or with a moving rotor.

Alternatively, after the retry attempts complete, if the motor is still stalled, the controller checks if command < CMD\_OFF\_TH and, if not, remains in the fail mode and the standby state with the RS flag in the SW status register set. Otherwise, the fault and flag are cleared, and the MCA mode is changed to standby mode.

NOTE: Stall detection is masked during the open-loop (ramp-up) state and starts working only after the controller transitions to the closed-loop (drive) operation and ROT\_STALL\_BLANK\_DUR elapses.

#### **NO-MOTOR START**

The no-motor start diagnostic detects a fault when a command to start the motor is applied without the motor connected to the board. The fault handling mechanism is the same as the stall detection fault.

#### **VBB OVERVOLTAGE VARIABLE LIMITER**

If enabled (OVVL\_ENABLE), A89333 enters the OVVL condition when the voltage increases to greater than OVVL\_VOLT\_TH and it exits the condition when the voltage reduces to less than OVVL\_VOLT\_TH.

If the voltage increases to greater than OVVL\_VOLT\_TH, the command is overwritten by the OVVL\_VAR\_LMT value. This prevents a further increase in voltage and does not trigger any faults.

To enter the OVVL condition, OVVL\_VOLT\_TH must be less than OVP TH (else, the OV fault is triggered first).

Overvoltage detection is not considered a fault, and it greatly influences the maximum power limit function.

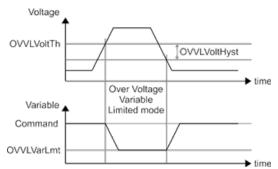



Figure 12: OVVL Timing Diagram



# 48 V Sensorless Code-Free FOC BLDC Motor Controller

#### **OVERCURRENT LIMIT**

A89333 can limit the maximum Q-axis current setting using the SFOC\_DRV\_CURR\_DRV\_LMT parameter in NVM as a percentage of the maximum current ( $I_{max}$ ) that the system can handle. The Q-axis current limit is also designed to avoid demagnetization of permanent magnets. This is not considered a fault.

### **MAXIMUM POWER LIMIT**

By monitoring  $V_{BB}$  and  $I_{BB}$ , the A89333 reduces the output current when the maximum power limit is exceeded and regulates the power around the NVM-programmed maximum power limit (SFOC\_PWR\_LMT). The maximum power limit can be applied in all control modes: speed, torque, and power. This limit is set as a percentage of the maximum power ( $P_{max}$ ) that the system can manage. For details, refer to the APEK89333 user manual available on the Allegro website.



### **APPLICATION FEATURES**

### **EEPROM NVM for Storing Motor Control and Configuration Data**

Motor control and configuration data are user-programmable and stored in the EEPROM of the IC.

Upon power-up, the A89333 waits for the internal regulators to reach their UVLO levels, then loads the configuration data from the EEPROM. After the configuration is loaded, the A89333 is in standby mode and is ready to respond to user input through the PWM/SPD pin or I<sup>2</sup>C port. The A89333 power-up and initialization sequence is shown in Figure 13.

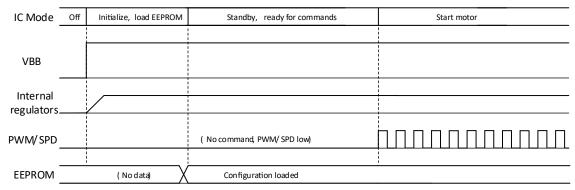



Figure 13: Power-Up and Initialization Sequence

### FG/RD Pin

A89333 FG/RD pin can be configured in the four states described in this section.

#### FG

When EN\_FG\_FUNC is set, a square wave representing the electrical rotation frequency is generated on the FG/RD pin to attain the motor speed according to:

• If FG\_PP = 0 (NVM parameter) is selected: Equation 18:

$$FG_{freq}[Hz] = 0.00390625 \times (FGgain + 1) \times f_{elect}[Hz].$$

• If FG\_PP = 1...7 (NVM parameter) is selected: Equation 19:

$$FG_{freq}[Hz] = \frac{0.00390625 \times (FGgain + 1)}{FGpp + 1} \times f_{elect}[Hz]$$

where  $FG_{gain}$  is an NVM parameter that can assume integer values between 0 and 1023.

Typical configuration is to set FG\_GAIN = 255 and FG\_PP to number of motor pole-pairs. With such a configuration, the FG pin toggles with electrical frequency normalized to pp/2.

According to FG\_START\_TYPE, the FG signal can be generated once FOC starts, during ramp-up or after rotor synchronization (drive state).



#### **RD**

When the RD feature is enabled (EN\_RD\_FUNC), the stalled condition is reported on the FG/RD pin according to the RD ACTIVE LEVEL parameter in NVM:

- RD\_ACTIVE\_LEVEL = 0: If a stall condition occurs, the FG/RD pin is set high.
- RD\_ACTIVE\_LEVEL = 1: If a stall condition occurs, the FG/RD pin is set low.

The pin remains in the active level throughout the duration of the presence of the stalled latch.

#### **FG IN VBB UV CONDITION**

Because the FG pin shares the SDA pin of the I²C serial communication, if an undervoltage fault is present, the FG pin is set to a high (logic 1) state, enabling I²C communication. For more information, refer to the VBB, UV, and NVM Reprogramming section. During this fault, the pin is set to logic 1, and the FG ID pattern generation stops. After VBB voltage increases to greater than the undervoltage threshold, the FG pin is set to the default state and, if the EN\_FG\_ID parameter is set, FG ID is reinitialized and generated. This is the only option that allows the FG ID pattern to be generated more than once in a power cycle.

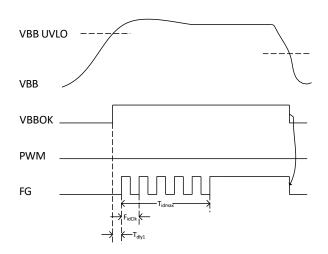
#### **FG ID PATTERN GENERATION**

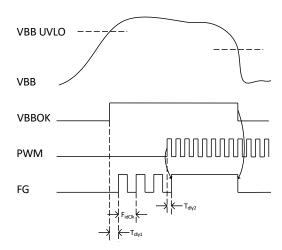
If FG ID pattern generation (EN\_FG\_ID) is set, a programmable identification clock signal is provided on the FG/RD pin upon startup so that a particular fan system can be identified. Upon power-up, the SPD/PWM pin must be low. During this state, the ID clock is available for a programmable duration from 1.125 s to 9 s, with resolution of 1.125 s or until the SPD/PWM pin remains low.

The ID clock frequency (FG\_ID\_FREQ) and duration (FG\_ID\_DUR) are configurable in NVM.

Frequency is calculated by:

Equation 20:


$$f_{FGID} = 266.7 + FGIdFreq \times 8.9 \text{ [Hz]}$$


Duration is calculated by:

Equation 21:

$$t_{FGID} = (FGIdDur + 1) \times 1.125 [s]$$

If configured, the FG ID pattern is generated once per power cycle, after POR; and it is stopped if it reaches its duration, the command above threshold (CMD\_ON\_TH), or if the undervoltage fault is present.





 $T_{dlv1} = 1/(2 \times F_{idClk}) + 0.001; T_{dlv2} = 1/(2 \times F_{idClk})$ 

Figure 14: ID Clock



### **Dead Time Configuration**

To avoid shoot-through current in the H-bridge, dead-time is implemented, which delays the high side from turning on after the low side turns off and delays the low side from turning on after the high side turns off.

The desired dead time can be programmed using the PWM DEAD TIME parameter:

Equation 22:

$$DeadTime[s] = pwmDeadTime \times t_{clk}[s]$$

where PWM\_DEAD\_TIME is configurable in NVM with values of [0:255],  $t_{clk}$  = 40 [ns] ( $T_J$  = 25°C,  $R_{OSC}$  = 25 k $\Omega$ ).

### **Slew Rate Control**

A89333 can control the MOSFET gate charge and discharge without the need for external components.

Output slew rate can be estimated by the  $Q_{GD}$  specification of MOSFET and chosen gate drive current according to:

Equation 23:

$$dt = Q_{GD}/(I_{SRC} \text{ or } I_{SNK}).$$

| PWM_GD_SLEW_RATE | I <sub>SRC</sub> (mA) (I <sub>HS</sub> ) | I <sub>SNK</sub> (mA) (I <sub>LS</sub> ) |
|------------------|------------------------------------------|------------------------------------------|
| 0                | 9                                        | 25                                       |
| 1                | 25                                       | 45                                       |
| 2                | 42                                       | 68                                       |
| 3                | 63                                       | 68                                       |

### **Buck Converter**

A8933 integrates a buck converter to generate the  $V_{REG}$  supply voltage for internal regulators and gate drivers from the  $V_{BB}$  supply voltage. The regulated voltage supplies the gate drive circuit, charges the bootstrap capacitors, and powers external circuits with a total consumption of up to 50 mA.

The buck regulator requires a single inductor (L = 10  $\mu$ H ± 20%,  $I_{SAT} \ge 970$  mA; a high value of inductor can be used if the inductor is not saturated) mounted between the SW and the VBIAS terminals and a Schottky diode ( $V_R \ge 100$  V,  $I_F \ge 1$  A) between the SW and GND terminals. A ceramic decoupling capacitor of at least 10  $\mu$ F should be connected between VBIAS and GND, close to the terminals. The switching frequency of the buck regulator is not fixed: It depends on the  $V_{BB}$  supply voltage.

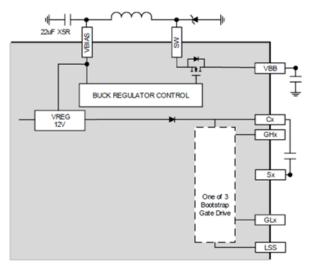



Figure 15: Buck Converter

#### **Advanced Features**

#### **BEMF COMPENSATION**

The A89333 implements a BEMF compensation function to improve acoustic performance and control efficiency. This feature is suitable for motors with strong cogging that do not have a pure sinusoidal BEMF and therefore could generate side harmonics when the pure sinusoidal voltages of the FOC algorithm are applied.

The presence of a noncompensated harmonic in the BEMF produces a significant ripple in current, which leads to energy wasted in the process of trying to demagnetize the permanent magnet and torque ripple that causes oscillation in the rotor and vibrations responsible of acoustic noise and damages in the ball bearings.

For more information about this advanced feature, refer to the APEK89333 user manual available on the Allegro website.

#### SOFT-OFF DECELERATION

A89333 implements the soft-off deceleration feature, which allows selection of motor deceleration method before it stops. For more information about this advanced feature, refer to the APEK89333 user manual available on the Allegro website.

### **SOFT START**

Soft start allows for the quiet application of current before the align or ramp-up state: It avoids the onset of the inrush current, which is caused by the presence of current-scaling references required in the align and ramp-up states.

For more information about this advanced feature, refer to the APEK89333 user manual available on the Allegro website.

#### **QUIET START**

To achieve a quieter OL-CL transition, A89333 implements a quiet start feature. The A89333 allows selection of a phase-current limit at the OL-CL transition.

Current can also be reduced in the ramp-up (SFOC\_RUP\_D\_CURR\_REF), toward the end of the open-loop ramp-up period, by properly configuring the OL-CL transition duration.

When the level of current is close to the level of current required by the feedback control, the transition noise may be able to be minimized.

For more information about this advanced feature, refer to the APEK89333 user manual available on the Allegro website.

#### **FORCED OL**

The forced OL feature allows the A89333 to switch from speed control to power or torque control when the external command exceeds a configurable threshold. Above the selected threshold, the reference can be selected to reach a specific desired value of power or torque, or the power/torque reference can be calculated from the applied PWM duty cycle/I<sup>2</sup>C command.

For more information about this advanced feature, refer to the APEK89333 user manual available on the Allegro website.

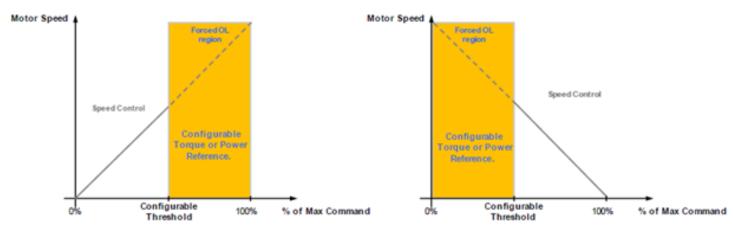



Figure 16: Forced OL High-Level Description



### VIN and Power-Loss Brake

The A89333 can detect a power loss by monitoring the VIN pin, and the brake function can be applied to slow the motor. When the motor spins, the BEMF voltage generated is rectified by the body diodes of the output DMOS devices and the  $V_{BB}$  power supply capacitor is charged. If adequate voltage can be stored on the  $V_{BB}$  capacitor, the low-side MOS devices can be turned on to provide braking force to the motor. When the motor slows, the generated BEMF voltage is reduced, eventually resulting in insufficient voltage on the  $V_{BB}$  line to power the low-side MOSFETS; thus, the braking force is not applied and the motor coasts.

When the motor spins, the A89333 power-loss brake circuitry boosts the voltage on the  $V_{BB}$  line by pulsing the motor windings off. If the motor is rotating, current is present in the motor winding when the brake is applied. This current can be used to charge up  $V_{BB}$  capacitor and boost the  $V_{BB}$  voltage by pulsing off the brake mode for a short time, similar to hysteretic boost converter operation. This, in turn, allows the IC to brake the motor at a much lower speed than otherwise possible.

Modes of operation depending on the state of the VBB and VIN pins are detailed in Table 6 and Figure 17.

Table 6: Operation Modes Based on VBB and VIN Pin States

| VIN [1] | VBB                                             | Mode of<br>Operation       | Notes                                                                                |
|---------|-------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|
| Low     | < V <sub>BBTH</sub>                             | Coast—No<br>braking        |                                                                                      |
| Low     | > V <sub>BBTH</sub> and<br>< V <sub>BOOST</sub> | Brake PWM                  | If motor spin is sufficiently fast, V <sub>BB</sub> ramps up to V <sub>BOOST</sub>   |
| Low     | = V <sub>BOOST</sub>                            | Brake—<br>Hysteretic boost | V <sub>BB</sub> is regulated to V <sub>BOOST</sub>                                   |
| Low     | > V <sub>BOOST</sub>                            | Brake                      | V <sub>BB</sub> decays depending on I <sub>BB2</sub> and V <sub>BB</sub> capacitance |
| High    | < V <sub>BBUVLO</sub> Coast—No braking          |                            | Power-up or power-down                                                               |
| High    | > V <sub>BBUVLO</sub>                           | Run                        | V <sub>REF</sub> powers up logic; motor starts if PWM signal is valid                |

[1] 
$$V_{IN} < V_{INTH} = Low$$
;  $V_{IN} > V_{INTH} = High$ 

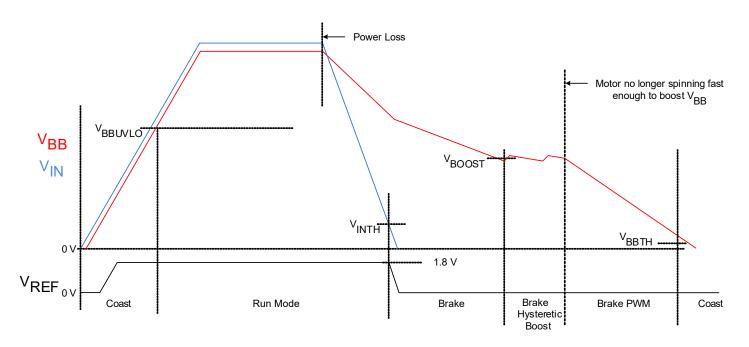



Figure 17: Typical Power-Up and Power-Loss Sequence



### **No-Power Brake**

Braking is also possible when power is not supplied to the module and the motor is spun by external force (i.e., windmill situation), as shown in Figure 17. In this case, the generated BEMF voltage increases  $V_{BB}$  beyond the  $V_{BBTH}$ , which enables the braking process.

For more information, refer to the APEK89333 user manual available on the Allegro website.

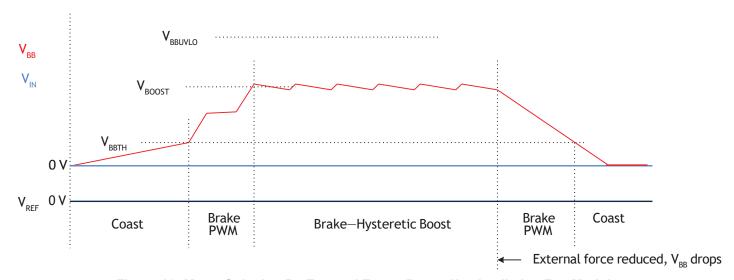



Figure 18: Motor Spinning By External Force, Power Not Applied to Fan Module



### REGISTERS AND NONVOLATILE MEMORY (NVM) MAP

A89333 uses NVM to store configuration data. Configuration data can be adjusted for a particular application. Upon power-up, the contents of the NVM are copied into registers (often called shadow registers) before they can be accessed by the logic circuits and used to control the motor operation. Direct access to shadow registers is also allowed through I<sup>2</sup>C interface. Writing to the shadow registers typically changes the operation of the driver immediately. (Some settings, the A89333 must enter standby mode, and the motor must be restarted before changes take effect). Changes made to NVM do not affect device operation until power is cycled.

| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                        | Value<br>(Dec) | Default | Description                                                                            |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|-----------------------------|----------------|---------|----------------------------------------------------------------------------------------|------------------------|--------|-----|---------------------------------------------------------------------------------------|---|-------|----------------------|---------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                              |                        |     | 2:0   | WNDML_MAX_ERR_ATTEMPTS      | [0:7]          | 0x0     | Maximum number of errors before exit to windmill error state (N + 1)                   |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|                                                  |                                              |                        |     | 5:3   | WNDML_MAX_TO_ATTEMPTS       | [0:7]          | 0x0     | Maximum number of timeouts before rotor is considered to be stationary (N + 1)         |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|                                                  |                                              |                        |     | 8:6   | WNDML_NUMBER_OF_ASSESSMENTS | [0:7]          | 0x0     | Quantity of windmill assessments to perform (N + 1)                                    |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|                                                  |                                              |                        |     | 9     | WNDML_TIMER_PRESCALER       | [0:1]          | 0x0     | Windmill timer prescaler: t <sub>tick</sub> = (1 + TIMER_PRESCALER) × t <sub>clk</sub> |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
| 4C0                                              | 460                                          | 0                      | 0   | 0     | 0                           | 0              | 0       | 0                                                                                      | 0                      | 0      | 0   | 0                                                                                     | 0 | 12:10 | WNDML_TIMEOUT_PERIOD | [0:7]               | 0x0   | Windmill timeout (1/2 of rotor period): For WNDML_TIMER_PRESCALER = 0 (frequency range 3000 Hz to 2 Hz): 0 = 20 ms 1 = 40 ms 2 = 81 ms 3 = 121 ms 4 = 162 ms 5 = 202 ms 6 = 243 ms 7 = 562 ms For WNDML_TIMER_PRESCALER = 1 (frequency range 750 Hz to 0.5 Hz): x2 |
|                                                  |                                              |                        |     |       |                             |                |         | 18:14                                                                                  | WNDML_EDGE_GLITCH_TIME | [0:31] | 0x0 | Edge glitch blanking time (N + 1) × 135 × (WNDML_TIMER_PRESCALER + 1) × $t_{\rm clk}$ |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|                                                  |                                              |                        |     |       |                             |                |         |                                                                                        |                        |        |     |                                                                                       |   |       | 21:19                | WNDML_DEBOUNCE_TICK | [0:7] | 0x0                                                                                                                                                                                                                                                                |
|                                                  |                                              |                        |     | 26:22 | WNDML_DEBOUNCE_DELAY        | [0:31]         | 0x0     | Debounce time in debounce tick: 2 <sup>N</sup>                                         |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |
|                                                  |                                              |                        |     | 31:27 | SFOC_REF_RATE_LIMIT         | [0:31]         | 0x0     | Reference rate limit, [0.09312u% × 2N] of maximum (system) speed per VCL update        |                        |        |     |                                                                                       |   |       |                      |                     |       |                                                                                                                                                                                                                                                                    |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                       | Value<br>(Dec)       | Default | Description                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|----------------------------|----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                  |                                              |                        |     | 4:2   | IPD_MAX_ERR_ATTEMPTS       | [0:7]                | 0x0     | maximum number of errors before return of error code, for Stage 1 and Stage 2                                                                                                                                                                                                                                                                                                                  |                                             |
|                                                  |                                              |                        |     | 7:5   | IPD_NMBR_OF_EXCIT_ELEMENTS | [0:7]                | 0x0     | Number of Stage 1 Base excitation elements to perform                                                                                                                                                                                                                                                                                                                                          |                                             |
|                                                  |                                              |                        |     | 10:8  | IPD_PWM_PERIOD             | [0:7]                | 0x0     | Duration of PWM period for IPD; 0 - 750 clk (33.33 kHz): 1 = 875 clk (28.57 kHz) 2 = 1000 clk (25 kHz) 3 = 1125 clk (22.22 kHz) 4 = 1250 clk (20 kHz) 5 = 1375 clk (18.18 kHz) 6 = 1500 clk (16.67 kHz) 7 = 1625 clk (15.38 kHz)                                                                                                                                                               |                                             |
|                                                  |                                              |                        |     | 12:11 | IPD_STG1_ROUND_PAUSE       | [0:3]                | 0x0     | Pause after rounds of stage 1: $0 = 18 \mu s$ $1 = 36 \mu s$ $2 = 72 \mu s$ $3 = 144 \mu s$                                                                                                                                                                                                                                                                                                    |                                             |
|                                                  |                                              |                        |     | 13    | IPD_STG2_CSA_GAIN          | [0:1]                | 0x0     | IPD stage 2, current sense amplifier (CAS) gain:<br>0 = 20 V/V<br>1 = 10 V/V                                                                                                                                                                                                                                                                                                                   |                                             |
|                                                  |                                              |                        |     | 14    | IPD_STG2_TYPE              | [0:1]                | 0x0     | IPD stage 2 type: 0 = constant-current (IPD comparator) mode 1 = constant time (ADC current measurement) mode                                                                                                                                                                                                                                                                                  |                                             |
|                                                  |                                              |                        |     | 20:15 | IPD_IPDDAC_CODE            | [0:63]               | 0x0     | Configuration of IPD DAC output signal for stage 2 of IPD: 2.4 V – N × 37.5 mV                                                                                                                                                                                                                                                                                                                 |                                             |
| 4C1                                              | 461                                          | 1                      | 1   | 22:21 | IPD_BLANKING_TIME          | [0:3]                | 0x0     | IPD comparator blanking time:<br>560 ns + (N × 2.88 µs)                                                                                                                                                                                                                                                                                                                                        |                                             |
|                                                  |                                              |                        |     |       | 25:23                      | IPD_STG2_ROUND_PAUSE | [0:7]   | 0x0                                                                                                                                                                                                                                                                                                                                                                                            | Pause after rounds of stage 2: (2N) × 90 µs |
|                                                  |                                              |                        |     | 30:26 | IPD_STG2_PULSE_DURATION    | [0:31]               | 0x0     | Stage 2 pulse duration [maximum value (timeout) in constant-current mode, pulse duration in constant time mode]: $0=14~\mu s$ $1=17~\mu s$ $2=22.5~\mu s$ $3=33.5~\mu s$ $4=4.5~\mu s$ $5=56~\mu s$ $6=67.5~\mu s$ $7=90~\mu s$ $8=112~\mu s$ $9=135~\mu s$ $10=225~\mu s$ $11=281~\mu s$ $12=381~\mu s$ $13=562~\mu s$ $14=843~\mu s$ $15=1.1~m s$ $16=2.2~m s$ $17=4.5~m s$ $18.31=reserved$ |                                             |
|                                                  |                                              |                        |     | 31    | IPD_STG2_SATURATION_TH     | [0:1]                | 0x0     | Stage 2 measurement equality threshold:<br>0 = 3.125%<br>1 = 6.25%                                                                                                                                                                                                                                                                                                                             |                                             |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                             | Value<br>(Dec)       | Default | Description                                                                                                                                                                                             |                                                               |   |   |   |     |                    |       |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|----------------------------------|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---|---|---|-----|--------------------|-------|
|                                                  |                                              |                        |     | 7:0   | PWM_PERIOD                       | [0:255]              | 0x0     | PWM period duration: (N × 16 + 800) × t <sub>clk</sub>                                                                                                                                                  |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 15:8  | PWM_DEAD_TIME                    | [0:255]              | 0x0     | PWM dead time pause duration: N × t <sub>dk</sub>                                                                                                                                                       |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 17:16 | RESERVED                         | [0:3]                | 0x0     | Reversed                                                                                                                                                                                                |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 20:18 | RESERVED                         | [0:7]                | 0x0     | Reserved                                                                                                                                                                                                |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 21    | PWM_HIGH_RES                     | [0:1]                | 0x0     | PWM high-resolution mode:<br>1 = enable<br>0 = disable                                                                                                                                                  |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 23:22 | PWM_REFRESH_PERIODICITY          | [0:3]                | 0x0     | Periodicity of bootstrap refresh pulse insertion, PWM periods: 0 = 4th PWM period 1 = 6th PWM period 2 = 8th PWM period 3 = 10th PWM period                                                             |                                                               |   |   |   |     |                    |       |
| 4C2                                              | 462                                          | 2                      | 2   | 26:24 | PWM_REFRESH_PULSE_DURATION       | [0:7]                | 0x0     | Bootstrap refresh pulse duration, N × t <sub>clk</sub> : 0 = off 1 = 12 (0.48 µs) 2 = 23 (0.92 µs) 3 = 34 (1.36 µs) 4 = 68 (2.72 µs) 5 = 101 (4 µs) 6 = 141 (5.6 µs) 7 = 197 (7.9 µs)                   |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 29:27 | PWM_REFRESH_THRESHOLD            | [0:7]                | 0x0     | Bootstrap refresh threshold, duty cycle that enables bootstrap refresh feature, % of PWM period: 0 = 100% 1 = 99.21875% 2 = 98.4375% 3 = 97.65625% 4 = 96.875% 5 = 96.09375% 6 = 95.3125% 7 = 94.53125% |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 31:30 | PWM_GD_SLEW_RATE                 | [0:3]                | 0x0     | Gate driver slew current setting, four settings: 0 = 10 mA for HS, 30 mA for LS 1 = 30 mA for HS, 50 mA for LS 2 = 50 mA for HS, 70 mA for LS 3 = 70 mA for HS, 70 mA for LS                            |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        | 3   | 0     | SFOC_CSA_GAIN                    | [0:1]                | 0x0     | SFOC CSA (current sense amplifier) gain:<br>0 = 20 V/V<br>1 = 10 V/ V                                                                                                                                   |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 3     | 3:1                              | SFOC_VCL_UPDATE_RATE | [0:7]   | 0x0                                                                                                                                                                                                     | SFOC VCL update rate in number of PWM periods: 2 <sup>N</sup> |   |   |   |     |                    |       |
| 4C3                                              | C3 463                                       | 3                      |     |       | 3                                | 3                    | 3       | 3                                                                                                                                                                                                       | 3                                                             | 3 | 3 | 3 | 5:4 | SFOC_FREQUENCY_RES | [0:3] |
|                                                  |                                              |                        |     | 14:6  | SFOC_RAMP_TIME                   | [0:511]              | 0x0     | Ramp-up time: [40 + 256 × N] VCL updates                                                                                                                                                                |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 24:15 | SFOC_RAMP_STEP                   | [0:1023]             | 0x0     | Ramp-up frequency (speed) rate: [(N + 1) × 0.0244140625% of maximum (system) speed] per second                                                                                                          |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 31:25 | SFOC_FREQUENCY_LMT               | [0:127]              | 0x0     | Speed limit: (N + 1) × 0.78125% of maximum (system) speed                                                                                                                                               |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 3:0   | SFOC_BRAKE_ALGN_CONST_DQ_CURR_KP | [0:15]               | 0x0     | Brake align constant D/Q current PI controller proportional gain (signed): 2 <sup>N</sup>                                                                                                               |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 9:4   | SFOC_BRAKE_ALGN_CONST_DQ_CURR_KI | [0:63]               | 0x0     | Brake align constant D/Q current PI controller integral gain (signed): 2 <sup>N</sup>                                                                                                                   |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 12:10 | SFOC_RD_OL_SPEED_TH              | [0:7]                | 0x0     | Reverse-drive open-loop speed threshold: (N + 1) × 0.390625% of maximum (system) speed                                                                                                                  |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 17:13 | SFOC_RD_D_CURR_REF               | [0:31]               | 0x0     | Reverse-drive D current reference: (N + 1) × 3.125% of maximum current                                                                                                                                  |                                                               |   |   |   |     |                    |       |
| 4C4                                              | 464                                          | 4                      | 4   | 27:18 | FG_GAIN                          | [0:1023]             | 0x0     | FG (frequency generation) gain, FG_PP:<br>0 = 0.00390625 × (N + 1)<br>1:7 = 0.00390625 × (N + 1) × 2/(FG_PP + 1)                                                                                        |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 30:28 | FG_PP                            | [0:7]                | 0x0     | Number of pole-pairs: (N + 1)                                                                                                                                                                           |                                                               |   |   |   |     |                    |       |
|                                                  |                                              |                        |     | 31    | NO_MOTOR_START_EN                | [0:1]                | 0x0     | No-motor start detection enable:<br>0 = disabled<br>1 = enabled                                                                                                                                         |                                                               |   |   |   |     |                    |       |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                             | Value<br>(Dec) | Default              | Description                                                                                                          |     |                                                                        |  |       |                   |        |     |                                                                                |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|----------------------------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------|--|-------|-------------------|--------|-----|--------------------------------------------------------------------------------|
|                                                  |                                              |                        |     | 11:0  | SFOC_LS                          | [0:4095]       | 0x0                  | Stator inductance constant, unitless                                                                                 |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              | _                      | _   | 15:12 | SFOC_LS_FL                       | [0:15]         | 0x0                  | Stator inductance constant FL (signed), 5 + N                                                                        |     |                                                                        |  |       |                   |        |     |                                                                                |
| 4C5                                              | 465                                          | 5                      | 5   | 25:21 | SFOC_RUP_D_CURR_REF              | [0:31]         | 0x0                  | Ramp-up D current reference; (N + 1) × 3.125% of maximum current                                                     |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 29:26 | SFOC_DRV_D_CURR_REF              | [0:15]         | 0x0                  | Drive D current reference: -1 × (N × 1.5625)% of maximum current                                                     |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 4:0   | SFOC_D_CURR_KP                   | [0:31]         | 0x0                  | D current PI controller proportional gain (signed), 2 <sup>N</sup>                                                   |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 10:5  | SFOC_D_CURR_KI                   | [0:63]         | 0x0                  | D current PI controller integral gain (signed), 2 <sup>N</sup>                                                       |     |                                                                        |  |       |                   |        |     |                                                                                |
| 4C6                                              | 466                                          | 6                      | 6   | 15:11 | SFOC_Q_CURR_KP                   | [0:31]         | 0x0                  | Q current PI controller proportional gain (signed), 2 <sup>N</sup>                                                   |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 21:16 | SFOC_Q_CURR_KI                   | [0:63]         | 0x0                  | Q current PI controller integral gain (signed), 2 <sup>N</sup>                                                       |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 27:22 | SFOC_PO_THETA_K                  | [0:63]         | 0x0                  | Position observer theta gain (signed), 2 <sup>N</sup>                                                                |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 5:0   | SFOC_PO_FREQ_K                   | [0:63]         | 0x0                  | Position observer frequency gain (signed), 2 <sup>N</sup>                                                            |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 8:6   | SFOC_PO_ERR_LMT                  | [0:7]          | 0x0                  | Position observer error limit, 2 <sup>N</sup>                                                                        |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 10:9  | SFOC_VAR_CTRL_MODE               | [0:3]          | 0x0                  | Variable control mode (variable select): 0 = speed control 1 = power control 2 = torque control 3 = reserved         |     |                                                                        |  |       |                   |        |     |                                                                                |
| 4C7                                              | 467                                          | 7                      | 7   | 16:11 | SFOC_VAR_KI                      | [0:63]         | 0x0                  | Variable control (speed/power) integral gain (signed), 2 <sup>N</sup>                                                |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 21:17 | SFOC_VAR_KP                      | [0:31]         | 0x0                  | Variable control (speed/power) proportional gain (signed), 2 <sup>N</sup>                                            |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 24:22 | BEMF_COMP_N                      | [0:7]          | 0x0                  | Number of BEMF harmonics to be compensated                                                                           |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 30:25 | BEMF_COMP_PHASE                  | [0:63]         | 0x0                  | Phase shift of BEMF-compensating component (signed), N $\times$ 3.125% of system angle                               |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 31    | SFOC_PWM_OVERMOD_EN              | [0:1]          | 0x0                  | PWM over-modulation factor:<br>0 = disabled (100%)<br>1 = enabled (115.625%)                                         |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 8:5   | SFOC_ALGN_DQ)_CURR_KP            | [0:15]         | 0x0                  | Align D/Q current PI controller proportional gain (signed), 2 <sup>N</sup>                                           |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     |       |                                  | 14:9           | SFOC_ALGN_DQ_CURR_KI | [0:63]                                                                                                               | 0x0 | Align D/Q current PI controller integral gain (signed), 2 <sup>N</sup> |  |       |                   |        |     |                                                                                |
| 4C8                                              | 468                                          | 8                      | 8   | 19:15 | SFOC_DRV_CURR_DRV_LMT            | [0:31]         | 0x0                  | Drive Q current limit: (N + 1) × 3.125% of maximum current                                                           |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        | l   |       | ì                                |                |                      | ì                                                                                                                    |     |                                                                        |  | 25:20 | SFOC_CURR_GEN_LMT | [0:63] | 0x0 | Generator (regenerative brake) Q current limit: N × 1.5625% of maximum current |
|                                                  |                                              |                        |     | 31:26 | SFOC_VBB_LMT                     | [0:63]         | 0x0                  | Voltage limit: 100% + N × 0.78125% of nominal voltage                                                                |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 5:0   | SFOC_VBB_LMT_TH                  | [0:63]         | 0x0                  | Voltage limit threshold (below voltage limit): (N + 1) × 0.78125% of nominal voltage                                 |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 11:6  | SFOC_PWR_LMT                     | [0:63]         | 0x0                  | Power limit: N $\times$ 1.5625% of {(3/2) $\times$ [(maximum current) $\times$ 1.1547 $\times$ (nominal voltage)/2]} |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 17:12 | SFOC_FREQUENCY_LMT_TH            | [0:63]         | 0x0                  | Speed limit threshold (below speed limit): (N + 1) × 0.78125% of speed limit                                         |     |                                                                        |  |       |                   |        |     |                                                                                |
| 4C9                                              | 469                                          | 9                      | 9   | 21:18 | SFOC_VAR_ERR_LMT                 | [0:15]         | 0x0                  | Variable error limit (speed or power): 2N                                                                            |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 22    | SFOC_ACDC_ALIGN_TYPE             | [0:1]          | 0x0                  | AC/DC align type:<br>0 = DC align<br>1 = AC align                                                                    |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 28:23 | BEMF_COMP_PHASE_CORR             | [0:63]         | 0x0                  | BEMF harmonic compensator angle correction (signed): N × 1.5625% of system angle/maximum system speed                |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 4:0   | SFOC_ALGN_D_CURR_REF             | [0:31]         | 0x0                  | Align D current reference: (N + 1) × 3.125% of maximum current                                                       |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 10:5  | SFOC_ALGN_TIME                   | [0:63]         | 0x0                  | Align time: 2048 × (N + 1) VCL updates                                                                               |     |                                                                        |  |       |                   |        |     |                                                                                |
| 404                                              | 464                                          | 10                     | 10  | 15:11 | SFOC_BRAKE_ALGN_CONST_D_CURR_REF | [0:31]         | 0x0                  | Brake align constant D current reference; (N + 1) × 3.125% of maximum current                                        |     |                                                                        |  |       |                   |        |     |                                                                                |
| 4CA                                              | 46A                                          | 10                     | 10  | 20:16 | DTC_GAIN                         | [0:31]         | 0x0                  | Dead time compensation (DTC) gain                                                                                    |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 27:21 | DTC_MAX_TIME                     | [0:127]        | 0x0                  | Dead time compensation (DTC) maximum compensation time, in units of 6.25%                                            |     |                                                                        |  |       |                   |        |     |                                                                                |
|                                                  |                                              |                        |     | 31:28 | SFOC_DWN_CURR_RATE_LIMIT         | [0:15]         | 0x0                  | Down current rate limit, [2(N + 11) × 0.745 $\mu$ %] of maximum current per VCL update                               |     |                                                                        |  |       |                   |        |     |                                                                                |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name            | Value<br>(Dec)  | Default | Description                                                                                                                                            |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|-----------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----|------------------------------------------------------------------------|-------|--------------------------|-------|-----|------------------------------------------------------------------------|
|                                                  |                                              | ( - /                  |     | 7:0   | MSQ_CST         | [0:255]         | 0x0     | Measurement-sequencer current-measurement settling time: N × t <sub>clk</sub>                                                                          |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     | 9:8   | EXT_CMD_SRC     | [0:3]           | 0x0     | External command source:  0 = I <sup>2</sup> C  1 = VCMD  2 = duty cycle (PWM)  3 = frequency (SPD)                                                    |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     | 11    | ALIGN_TYPE      | [0:1]           | 0x0     | Align type:<br>0 = align<br>1 = IPD                                                                                                                    |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     | 12    | IPD_FAIL_ACTION | [0:1]           | 0x0     | IPD fail action: 0 = perform alignment 1 = start from 0 angle                                                                                          |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              | 11 1                   |     | 13    | EN_RD_FUNC      | [0:1]           | 0x0     | Enable rotation detection (RD) functionality:<br>0 = disabled<br>1 = enabled                                                                           |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
| 4CB                                              | 46B                                          |                        | 11  | 14    | EN_FG_FUNC      | [0:1]           | 0x0     | Enable frequency generation (FG) functionality:<br>0 = disabled<br>1 = enabled                                                                         |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
| 40B                                              | 40D                                          |                        |     | 15    | PWM_MOD_MODE    | [0:1]           | 0x0     | PWM switching pattern configuration: 0 = edge start with compensation 1 = edge start without compensation                                              |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     |       |                 |                 | 23:16   | VBB_NOM                                                                                                                                                | [0:255]                                                             | 0x0 | Nominal V <sub>BB</sub> voltage; N × 0.515625 V                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     |       |                 |                 |         |                                                                                                                                                        |                                                                     |     |                                                                        | 26:24 | SYSTEM_TIMER_UPDATE_RATE | [0:7] | 0x0 | System timer update rate: $N=0.5,1188ms/2^{(N\times2)}$ $N=6.7,1.16ms$ |
|                                                  |                                              |                        |     |       |                 |                 | 27      | FG_START_TYPE                                                                                                                                          | [0:1]                                                               | 0x0 | FG start type:<br>0 = after FOC starts<br>1 = after rotor synchronizes |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     |       | 28              | RD_ACTIVE_LEVEL | [0:1]   | 0x0                                                                                                                                                    | Set rotation detection (RD) active high/low:<br>0 = high<br>1 = low |     |                                                                        |       |                          |       |     |                                                                        |
|                                                  |                                              |                        |     | 30:29 | CAT_DUR         | [0:3]           | 0x0     | Current acquisition time duration:<br>0 = 1/16 t <sub>PWM</sub><br>1 = 1/20 t <sub>PWM</sub><br>2 = 1/32 t <sub>PWM</sub><br>3 = 1/40 t <sub>PWM</sub> |                                                                     |     |                                                                        |       |                          |       |     |                                                                        |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                   | Value<br>(Dec) | Default | Description                                                                                                                                                                                  |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|------------------------|----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4CC                                              | 46C                                          | 12                     | 12  | 1     | FORCED_OL_EN           | [0:1]          | 0x0     | Forced OL enable:<br>0 = disabled<br>1 = enabled                                                                                                                                             |
|                                                  |                                              |                        |     | 2     | FORCED_OL_MODE_SEL     | [0:1]          | 0x0     | Forced OL mode select:<br>0 = torque<br>1 = power                                                                                                                                            |
|                                                  |                                              |                        |     | 5:3   | FORCED_OL_HYST         | [0:7]          | 0x0     | Forced OL torque/power hysteresis; 0.78125 × N% of maximum command                                                                                                                           |
|                                                  |                                              |                        |     | 6     | ROSC_EXT_DIS           | [0:1]          | 0x0     | Disconnects external resistor from base OSC block, and connects digital test/debug input buffer; typical application configuration is ROSC_EXT_DIS = 0 (enabled, base RCO fully operational) |
|                                                  |                                              |                        |     | 7     | NBRAKE_IN_DIS          | [0:1]          | 0x0     | Disables brake request via pin functionality:<br>0 = enabled<br>1 = disabled                                                                                                                 |
|                                                  |                                              |                        |     | 8     | IPUP_NFLT_DIS          | [0:1]          | 0x0     | Internal pull-up resistor on nFLT pin disable:<br>0 = enabled<br>1 = disabled                                                                                                                |
|                                                  |                                              |                        |     | 9     | IPUP_FGRD_DIS          | [0:1]          | 0x0     | Internal pull-up resistor on FG/RD pin disable: 0 = enabled 1 = disabled                                                                                                                     |
|                                                  |                                              |                        |     | 10    | IPUP_PWMSPD_DIS        | [0:1]          | 0x0     | Internal pull-up resistor on PWM/SPD pin disable: 0 = enabled 1 = disabled                                                                                                                   |
|                                                  |                                              |                        |     | 11    | IPUP_NBRAKE_DIS        | [0:1]          | 0x0     | Internal pull-up resistor on nBRAKE pin disable: 0 = enabled 1 = disabled                                                                                                                    |
|                                                  |                                              |                        |     | 12    | IPUP_DIR_DIS           | [0:1]          | 0x0     | Internal pull-up resistor on DIR pin disable: 0 = enabled 1 = disabled                                                                                                                       |
|                                                  |                                              |                        |     | 13    | IPUP_SCLSEL_DIS        | [0:1]          | 0x0     | Internal pull-up resistor on SCLSEL pin disable: 0 = enabled 1 = disabled                                                                                                                    |
|                                                  |                                              |                        |     | 16:14 | OVP_TH                 | [0:7]          | 0x0     | Overvoltage protection threshold: 80 V – N × 5 V                                                                                                                                             |
|                                                  |                                              |                        |     | 17    | OVP_ENABLE             | [0:1]          | 0x0     | Overvoltage protection enable: 0 = disabled 1 = enabled                                                                                                                                      |
|                                                  |                                              |                        |     | 18    | EN_PWMSPD_FILT         | [0:1]          | 0x0     | PWM/SPD pin filter enable:<br>0 = disabled<br>1 = enabled                                                                                                                                    |
|                                                  |                                              |                        |     | 20:19 | OCP_BLANK_TIME         | [0:3]          | 0x0     | Overcurrent protection VDS comparator blanking time: (N + 1) × 800 ns                                                                                                                        |
|                                                  |                                              |                        |     | 22:21 | OCP_TH                 | [0:3]          | 0x0     | Overcurrent protection VDS comparator threshold: 0 = 0.5 V 1 = 0.75 V 2 = 1 V 3 = 1.5 V                                                                                                      |
|                                                  |                                              |                        |     | 24:23 | OCP_DEB_TIME           | [0:3]          | 0x0     | Overcurrent protection VDS comparator debounce time: $0=10\times t_{clk}$ $1=18\times t_{clk}$ $2=25\times t_{clk}$ $3=32\times t_{clk}$                                                     |
|                                                  |                                              |                        |     | 25    | OCP_ENABLE             | [0:1]          | 0x0     | Overcurrent protection enable:<br>0 = disabled<br>1 = enabled                                                                                                                                |
|                                                  |                                              |                        |     | 27:26 | UVS_TH                 | [0:3]          | 0x0     | Undervoltage shutdown threshold:<br>0 = 32 V<br>1 = 25 V<br>2 = 7 V                                                                                                                          |
|                                                  |                                              |                        |     | 28    | UVS_DISABLE            | [0:1]          | 0x0     | Undervoltage shutdown disable:<br>0 = enabled<br>1 = disabled                                                                                                                                |
|                                                  |                                              |                        |     | 29    | OVT_DISABLE            | [0:1]          | 0x0     | Overtemperature shutdown disable:<br>0 = enabled<br>1 = disabled                                                                                                                             |
|                                                  |                                              |                        |     | 30    | NO_DRIVE_TELEMETRY_DIS | [0:1]          | 0x0     | Disable telemetry measurements when motor is not being driven:  0 = enabled  1 = disabled                                                                                                    |
|                                                  |                                              |                        |     | 31    | I2C_RESPONSE_MODE      | [0:1]          | 0x0     | I <sup>2</sup> C protocol response mode:<br>0 = in frame<br>1 = out of frame                                                                                                                 |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM      | Bits  | Name                         | Value<br>(Dec) | Default | Description                                                                                                                                                                |
|--------------------------------------------------|----------------------------------------------|------------------------|----------|-------|------------------------------|----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                              |                        |          | 10:4  | FORCED_OL_CMD_REF            | [0:127]        | 0x0     | Forced OL torque/power command:<br>0 = not applied<br>1127 = [25 + 0.5859375 × (N + 1)]% of maximum command                                                                |
|                                                  |                                              |                        |          | 16:11 | FORCED_OL_TH                 | [0:63]         | 0x0     | Forced OL torque/power threshold:<br>Inversion disabled = [50 + 0.78125 × (N + 1)]% of maximum command<br>Inversion enabled = [50 - 0.78125 × (N + 1)]% of maximum command |
|                                                  |                                              |                        |          | 20:17 | ROT_STALL_TOO_LOW_VBEMF_TH   | [0:15]         | 0x0     | Stall detection BEMF low threshold: $(N+1)\times 0.78125\% \text{ of } [1.1547\times (\text{nominal voltage/2})\times (I_q/\text{maximum current})]$                       |
| 4CD                                              | 46D                                          | 13                     | 13       | 23:21 | ROT_STALL_DET_CTRL           | [0:7]          | 0x0     | Rotor stall detection control:  0th bit = $V_q$ estimate  1st bit = frequency estimate  2nd bit = BEMF  Rotor stall detection control settings: 0 = disabled               |
|                                                  |                                              |                        |          |       |                              |                |         | 1:7 = combination of stall detection options                                                                                                                               |
|                                                  |                                              |                        |          | 25:24 | ROT_STALL_BLANK_DUR          | [0:3]          | 0x0     | Rotor stall blanking time duration: [(rotor synchronization timeout)/2N]                                                                                                   |
|                                                  |                                              |                        |          | 29:26 | ROT_SYNC_TOUT                | [0:15]         | 0x0     | Rotor synchronization timeout, in amount of VCL updates: 2 <sup>(N + 8)</sup>                                                                                              |
|                                                  |                                              |                        |          | 30    | NFLT_DIS                     | [0:1]          | 0x0     | Disables fault indication via pin functionality:<br>0 = enabled<br>1 = disabled                                                                                            |
|                                                  |                                              |                        |          | 31    | NFLT_STARTUP_DIS             | [0:1]          | 0x0     | Pull nFLT to zero during startup:<br>0 = enable<br>1 = disable                                                                                                             |
|                                                  |                                              |                        |          | 5:2   | ROT_STALL_DET_TIME_TH        | [0:15]         | 0x0     | Rotor stall detection time threshold, in amount of VCL updates: 2 <sup>(N + 6)</sup>                                                                                       |
|                                                  |                                              |                        |          | 8:6   | ROT_STALL_DET_HIGH_TH        | [0:7]          | 0x0     | Rotor stall detection high threshold: 100% + (N + 1) × 12.5%                                                                                                               |
|                                                  |                                              | 14                     | <b>.</b> | 11:9  | ROT_STALL_DET_LOW_TH         | [0:7]          | 0x0     | Rotor stall detection low threshold: (N + 1) × 12.5%                                                                                                                       |
| 4CE                                              | 46E                                          |                        | 14       | 15:12 | ROT_STALL_TOO_LOW_SPEED_TH   | [0:15]         | 0x0     | Rotor stall too low speed threshold: $(N+1)\times 0.09765625\%$ of maximum (system) speed                                                                                  |
|                                                  |                                              |                        |          | 31:16 | CUSTOMER_PASSWORD            | [0:65535]      | 0x0     | Customer EEPROM password, 16 bit: 0x0000 and 0xFFFF are invalid password options (used to disable password protection)                                                     |
|                                                  |                                              |                        |          | 11:0  | SFOC_RS                      | [0:4095]       | 0x0     | Stator resistance, unitless                                                                                                                                                |
| 4CF                                              | 46F                                          | 15                     | 15       | 14:12 | SFOC_RS_FL                   | [0:7]          | 0x0     | Stator resistance FL (signed), 6 + N                                                                                                                                       |
| 401                                              | 401                                          | 10                     | 10       | 27:16 | SFOC_KE                      | [0:4095]       | 0x0     | Motor electrical constant, unitless                                                                                                                                        |
|                                                  |                                              |                        |          |       | SFOC_KE_FL                   | [0:7]          | 0x0     | Motor electrical constant FL (signed), 8 + N                                                                                                                               |
|                                                  |                                              |                        |          | 2:0   | EXT_CMD_FILTER_TAU           | [0:7]          | 0x0     | External command filter time constant, $2^{(14-N)}$ samples: $0 = \text{disabled}$                                                                                         |
|                                                  |                                              |                        |          | 3     | ROT_DIR_INVERT               | [0:1]          | 0x0     | Rotation direction inversion:<br>0 = no inversion<br>1 = inversion                                                                                                         |
|                                                  |                                              |                        |          | 4     | EXT_CMD_AVERAGE_EN           | [0:1]          | 0x0     | External command average enable:<br>0 = disabled<br>1 = enabled                                                                                                            |
|                                                  |                                              |                        |          | 7:5   | STAT_START_ADVANCE_ANGLE     | [0:7]          | 0x0     | Stationary-start rotor-advance angle: N × 5.625°                                                                                                                           |
| 4D0                                              | 470                                          | 16                     | 16       | 8     | EN_FG_ID                     | [0:1]          | 0x0     | Enable FG ID feature                                                                                                                                                       |
| 400                                              | 4/0                                          | 10                     | 10       | 11:9  | FG_ID_DUR                    | [0:7]          | 0x0     | FG ID sequence duration: (N + 1) × 1.125 s                                                                                                                                 |
|                                                  |                                              |                        |          | 17:12 | FG_ID_FREQUENCY              | [0:63]         | 0x0     | FG ID sequence frequency: (266.7 + N × 8.89) Hz                                                                                                                            |
|                                                  |                                              |                        |          | 20:18 | WNDML_START_ADVANCE_ANGLE    | [0:7]          | 0x0     | Windmill-start rotor-advance angle: N × 5.625°                                                                                                                             |
|                                                  |                                              |                        |          | 22:21 | ALIGN_START_ANGLE            | [0:3]          | 0x0     | Align-start rotor angle: N × 16.875°                                                                                                                                       |
|                                                  |                                              |                        |          | 23    | BOOTSTRAP_PRECHARGE_DURATION | [0:1]          | 0x0     | Duration of bootstrap precharge procedure performed before start from stationary position: 0 = 36 $\mu s$ 1 = 72 $\mu s$                                                   |
|                                                  |                                              |                        |          | 31:24 | SHI1_COMP                    | [0:255]        | 0x0     | Single-shunt I1 current compensation: 2 × N                                                                                                                                |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                        | Value<br>(Dec)                      | Default | Description                                                                                                                                      |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|-----------------------------|-------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                              |                        |     | 0     | BRAKE_TYPE                  | [0:1]                               | 0x0     | Brake type:<br>0 = low-side FET<br>1 = constant current                                                                                          |
|                                                  |                                              |                        |     | 2     | BRAKE_IN_REVERSE_TYPE       | [0:1]                               | 0x0     | Brake in reverse type:<br>0 = FOC decelerate<br>1 = brake                                                                                        |
|                                                  |                                              |                        |     | 3     | BRAKE_IN_WNDML_ALWAYS_EN    | [0:1]                               | 0x0     | Brake in windmill always enable:<br>0 = disabled<br>1 = enabled                                                                                  |
| 4D1                                              | 471                                          | 17                     | 17  | 4     | BRAKE_IF_OFF_EN             | [0:1]                               | 0x0     | Brake if off enable:<br>0 = disabled<br>1 = enabled                                                                                              |
| 401                                              | 4/1                                          | ''                     | 17  | 7:5   | BRAKE_SEQ_LENGTH            | [0:7]                               | 0x0     | Brake sequence length: 2 <sup>(N + 1)</sup> – 1                                                                                                  |
|                                                  |                                              |                        |     | 10:8  | BRAKE_FET_PULSE_AMOUNT      | [0:7]                               | 0x0     | Brake by FET pulses amount: 2(N + 1)                                                                                                             |
|                                                  |                                              |                        |     | 13:11 | BRAKE_FET_ON_DURATION       | [0:7]                               | 0x0     | Brake by FET on duration: (2 <sup>N</sup> ) × 11.24 μs                                                                                           |
|                                                  |                                              |                        |     | 15:14 | BRAKE_FET_OFF_DURATION      | [0:3]                               | 0x0     | Brake by FET off duration: N × BRAKE_FET_ON_DURATION                                                                                             |
|                                                  |                                              |                        |     | 20:16 | BRAKE_FREQUENCY_TOO_HIGH_TH | [0:31]                              | 0x0     | Brake frequency too high threshold: (N + 1) × 3.125% of maximum (system) speed                                                                   |
|                                                  |                                              |                        |     |       | 23:21                       | BRAKE_FREQUENCY_TOO_HIGH_COAST_TIME | [0:7]   | 0x0                                                                                                                                              |
|                                                  |                                              |                        |     |       | 25:24                       | STRONG_ALGN_CURR_GAIN               | [0:3]   | 0x0                                                                                                                                              |
|                                                  |                                              |                        |     | 31:26 | BEMF_COMP_AMPLITUDE         | [0:63]                              | 0x0     | Amplitude of compensating component: N × 0.390625% of nominal voltage: 0 = disable BEMF compensator                                              |
|                                                  |                                              |                        |     | 6:0   | STPD_TH                     | [0:127]                             | 0x0     | Stopped threshold, below which this speed level, the rotor is considered stationary: $(N+1)\times 0.0244140625\%$ of maximum (system) speed      |
|                                                  |                                              |                        |     | 9:7   | PO_OPER                     | [0:7]                               | 0x0     | Position observer operational, below which speed, the position observer operates unreliably: $(N+1)\times 0.1953125\%$ of maximum (system) speed |
|                                                  |                                              |                        |     | 15:10 | DEFAULT_EXT_CMD             | [0:63]                              | 0x0     | Default external command value: N × 1.5625% of maximum command                                                                                   |
| 4D2                                              | 472                                          | 18                     | 18  | 21:16 | CMD_ON_TH                   | [0:63]                              | 0x0     | Command on threshold: (N + 1) × 0.390625% of maximum command                                                                                     |
| 702                                              | 712                                          | 10                     | "   | 27:22 | CMD_OFF_TH                  | [0:63]                              | 0x0     | Command off threshold: N × 0.390625% of maximum command                                                                                          |
|                                                  |                                              |                        |     | 28    | RESERVED                    | [0:1]                               | 0x0     | Reserved                                                                                                                                         |
|                                                  |                                              |                        |     | 30:29 | RESERVED                    | [0:3]                               | 0x0     | Reserved                                                                                                                                         |
|                                                  |                                              |                        |     | 31    | SOFT_OFF_BRAKE_EN           | [0:1]                               | 0x0     | Soft-off brake enable:<br>0 = disabled<br>1 = enabled                                                                                            |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name                         | Value<br>(Dec) | Default | Description                                                                                                                                                                                                                                               |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|------------------------------|----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                              |                        |     | 2:0   | SFOC_DECEL_OL_SPEED_TH       | [0:7]          | 0x0     | Deceleration open-loop speed threshold:<br>(N + 1) × 0.390625% of maximum (system) speed                                                                                                                                                                  |
|                                                  |                                              |                        |     | 3     | SOFT_OFF_EN                  | [0:1]          | 0x0     | Soft-off enable:<br>0 = disabled<br>1 = enabled                                                                                                                                                                                                           |
|                                                  |                                              |                        |     | 9:4   | SOFT_OFF_FREQUENCY_TH        | [0:63]         | 0x0     | Soft-off frequency threshold: (N + 1) × 0.1953125% of maximum (system) speed                                                                                                                                                                              |
|                                                  |                                              |                        |     | 11:10 | PIN_DIR_D_EB                 | [0:3]          | 0x0     | DIR pin debounce time<br>0 = 0 ns<br>1 = 840 ns<br>2 = 12.76 μs<br>3 = 127.6 μs                                                                                                                                                                           |
| 4D3                                              | 473                                          | 19                     | 19  | 13:12 | PIN_NBRAKE_D_EB              | [0:3]          | 0x0     | nBRAKE pin debounce time:<br>0 = 0 ns<br>1 = 840 ns<br>2 = 12.76 µs<br>3 = 127.6 µs                                                                                                                                                                       |
|                                                  |                                              |                        |     | 14    | DEFAULT_NBRAKE               | [0:1]          | 0x0     | Default nBRAKE bit value (inverse):<br>0 = no brake<br>1 = brake                                                                                                                                                                                          |
|                                                  |                                              |                        |     | 19:15 | SFOC_DECEL_RATE              | [0:31]         | 0x0     | Deceleration rate: 0.0244140625% of maximum (system) speed during (N + 1) $\times$ 32 VCL updates                                                                                                                                                         |
|                                                  |                                              |                        |     | 24:20 | SFOC_DECEL_OL_D_CURR_REF     | [0:31]         | 0x0     | Deceleration open-loop D current reference: (N + 1) × 3.125% of maximum current                                                                                                                                                                           |
|                                                  |                                              |                        |     | 29:25 | RESERVED                     | [0:31]         | 0x0     | Reserved                                                                                                                                                                                                                                                  |
|                                                  |                                              |                        |     | 30    | SFOC_QUIET_START_EN          | [0:1]          | 0x0     | Enable quiet start:<br>0 = disabled<br>1 = enabled                                                                                                                                                                                                        |
|                                                  |                                              |                        |     | 31    | SFOC_SOFT_START_EN           | [0:1]          | 0x0     | Enable soft start:<br>0 = disabled<br>1 = enabled                                                                                                                                                                                                         |
|                                                  |                                              |                        |     | 6:0   | OVVL_VOLT_TH                 | [0:127]        | 0x0     | Overvoltage variable limiter voltage threshold: 7.21875 V + N × 1.03125 V                                                                                                                                                                                 |
|                                                  |                                              |                        |     | 14:7  | OVVL_VAR_LMT                 | [0:255]        | 0x0     | Overvoltage variable limiter, variable limit: $(N+1)\times 0.390625\%$ of maximum variable value                                                                                                                                                          |
|                                                  |                                              |                        |     | 15    | OVVL_ENABLE                  | [0:1]          | 0x0     | Overvoltage variable limiter enable:<br>0 = disabled<br>1 = enabled                                                                                                                                                                                       |
|                                                  |                                              |                        |     | 22:16 | ROT_START_RETRY_TOUT         | [0:127]        | 0x0     | Rotor start retry timeout: N of system timer interrupts                                                                                                                                                                                                   |
|                                                  |                                              |                        |     | 26:23 | ROT_START_RETRY_MAX_ATTEMPTS | [0:15]         | 0x0     | Rotor start retry maximum attempts:<br>0 = infinite number of attempts<br>1:15 = N attempts                                                                                                                                                               |
|                                                  |                                              |                        |     | 27    | CLK_COMP_ENABLE              | [0:1]          | 0x0     | Clock-compensation feature enable                                                                                                                                                                                                                         |
| 4D4                                              | 474                                          | 20                     | 20  | 31:28 | CLK_COMP_REF                 | [0:15]         | 0x0     | Clock-compensation carrier frequency:  0 = 88.9 Hz 1 = 133.3 Hz 2 = 177.7 Hz 3 = 222.2 Hz 4 = 266.7 Hz 5 = 311.1 Hz 6 = 355.5 Hz 7 = 400 Hz 8 = 444.4 Hz 9 = 488.9 Hz 10 = 533.3 Hz 11 = 577.8 Hz 12 = 622.2 Hz 13 = 666.7 Hz 14 = 711.1 Hz 15 = 888.9 Hz |



| I <sup>2</sup> C EEPROM<br>NVM Register<br>(Hex) | I <sup>2</sup> C Shadow<br>Register<br>(Hex) | EE<br>Address<br>(Hex) | NVM | Bits  | Name               | Value<br>(Dec) | Default | Description                                                                                                           |      |        |           |        |                |     |                |
|--------------------------------------------------|----------------------------------------------|------------------------|-----|-------|--------------------|----------------|---------|-----------------------------------------------------------------------------------------------------------------------|------|--------|-----------|--------|----------------|-----|----------------|
|                                                  |                                              |                        |     | 17:13 | SFOCSTARTCURRLMT   | [0:31]         | 0x0     | Phase current limit at the transition to the closed-loop:<br>(N + 1) × 3.125% of maximum current                      |      |        |           |        |                |     |                |
|                                                  |                                              |                        |     | 20:18 | SFOCSOFTSTARTTIME  | [0:7]          | 0x0     | Soft start time: 256 × (N + 1) VCL updates                                                                            |      |        |           |        |                |     |                |
| 4D5                                              | 475                                          | 21                     | 21  | 23:21 | SFOCQUIETSTARTTIME | [0:7]          | 0x0     | Quiet start (OL→CL transition) duration: 512 × (N + 1) VCL updates                                                    |      |        |           |        |                |     |                |
|                                                  |                                              |                        |     | 27:24 | SFOCDRVCURRRATELMT | [0:15]         | 0x0     | Current rate limit in drive mode: $[2^{(N+1)}\times 0.745~\mu\%] \text{ of maximum current per VCL update}$           |      |        |           |        |                |     |                |
|                                                  |                                              |                        |     | 31:28 | SFOCGENCURRRATELMT | [0:15]         | 0x0     | Current rate limit in generator mode: $[2^{(N+1)}\times 0.745\mu\text{\%}] \text{ of maximum current per VCL update}$ |      |        |           |        |                |     |                |
| 4D6                                              | 476                                          | 22                     | 22  | 15:0  | UCC_X0             | [0:65535]      | 0x0     | UCC: × point 0                                                                                                        |      |        |           |        |                |     |                |
| 400                                              | 470                                          | 22                     | 22  | 31:16 | UCC_X1             | [0:65535]      | 0x0     | UCC: × point 1                                                                                                        |      |        |           |        |                |     |                |
| 4D7                                              | 477                                          | 22                     | 22  | 22    | 23                 | 23             | 22      | າາ                                                                                                                    | 22   | 23     | 15:0      | UCC_X2 | [0:65535]      | 0x0 | UCC: × point 2 |
| 407                                              | 411                                          | 25                     | 23  | 31:16 | UCC_X3             | [0:65535]      | 0x0     | UCC: × point 3                                                                                                        |      |        |           |        |                |     |                |
| 4D8                                              | 478                                          | 24                     | 24  | 15:0  | UCC_X4             | [0:65535]      | 0x0     | UCC: × point 4                                                                                                        |      |        |           |        |                |     |                |
| 400                                              | 470                                          |                        | 24  | 31:16 | UCC_X5             | [0:65535]      | 0x0     | UCC: × point 5                                                                                                        |      |        |           |        |                |     |                |
| 4D9                                              | 479                                          | 25                     | 25  | 15:0  | UCC_X6             | [0:65535]      | 0x0     | UCC: × point 6                                                                                                        |      |        |           |        |                |     |                |
| 409                                              | 479                                          | 25                     | 25  | 31:16 | UCC_X7             | [0:65535]      | 0x0     | UCC: × point 7                                                                                                        |      |        |           |        |                |     |                |
| 4DA                                              | 47A                                          | 26                     | 26  | 26    | 26                 | 26             | 26      | 26 26                                                                                                                 | 15:0 | UCC_X8 | [0:65535] | 0x0    | UCC: × point 8 |     |                |
| 40/                                              | 4//                                          | 20                     | 20  | 31:16 | UCC_X9             | [0:65535]      | 0x0     | UCC: × point 9                                                                                                        |      |        |           |        |                |     |                |
| 4DB                                              | 47B                                          | 27                     | 27  | 15:0  | UCC_Y0             | [0:65535]      | 0x0     | UCC: Y point 0                                                                                                        |      |        |           |        |                |     |                |
| 400                                              | 475                                          | 21                     | 21  | 31:16 | UCC_Y1             | [0:65535]      | 0x0     | UCC: Y point 1                                                                                                        |      |        |           |        |                |     |                |
| 4DC                                              | 47C                                          | 28                     | 28  | 15:0  | UCC_Y2             | [0:65535]      | 0x0     | UCC: Y point 2                                                                                                        |      |        |           |        |                |     |                |
| 400                                              | 4/0                                          | 20                     | 20  | 31:16 | UCC_Y3             | [0:65535]      | 0x0     | UCC: Y point 3                                                                                                        |      |        |           |        |                |     |                |
| 4DD                                              | 47D                                          | 29                     | 29  | 15:0  | UCC_Y4             | [0:65535]      | 0x0     | UCC: Y point 4                                                                                                        |      |        |           |        |                |     |                |
| 400                                              | 4/0                                          | 29                     | 29  | 31:16 | UCC_Y5             | [0:65535]      | 0x0     | UCC: Y point 5                                                                                                        |      |        |           |        |                |     |                |
| 4DE                                              | 47E                                          | 30                     | 30  | 15:0  | UCC_Y6             | [0:65535]      | 0x0     | UCC: Y point 6                                                                                                        |      |        |           |        |                |     |                |
| 4DL                                              | 4/1                                          | 30                     | 30  | 31:16 | UCC_Y7             | [0:65535]      | 0x0     | UCC: Y point 7                                                                                                        |      |        |           |        |                |     |                |
| 4DF                                              | 47F                                          | 31                     | 31  | 15:0  | UCC_Y8             | [0:65535]      | 0x0     | UCC: Y point 8                                                                                                        |      |        |           |        |                |     |                |
| וטד                                              | 7/1                                          | 01                     | "   | 31:16 | UCC_Y9             | [0:65535]      | 0x0     | UCC: Y point 9                                                                                                        |      |        |           |        |                |     |                |



#### **USER REGISTERS**

Registers not shown are not for user access. Any change to a value in the undocumented registers may cause a malfunction or damage to the part.

| I <sup>2</sup> C Address (Hex) | Field Name      | Bits | Read/Write [1] | Default Value | Description                                                                       |
|--------------------------------|-----------------|------|----------------|---------------|-----------------------------------------------------------------------------------|
| 0x0                            | REG: SW_STATUS  | 31:0 | RO             | 0x0           | Refer to the SW Status Register, SW_STATUS section                                |
| 0x1                            | REG: REF_CMD    | 16:0 | RW             | 0x0           | Refer to the I <sup>2</sup> C Command Register, REF_CMD section                   |
| 0x2                            | REG: BRAKE_CTRL | 0:0  | RW             | 0x0           | 0 = brake is applied (via register or via nBRAKE pin)<br>1 = brake is not applied |

<sup>[1]</sup> RO = Read-Only; RW = Read/Write



#### SW Status Register, SW\_STATUS

The software status read-only register at address (0x0000) contains the motor control mode, state, fault, and status flags.

| Address 0x0000, Read-Only |      |        |                   |                                                                                                                                                                           |  |  |  |  |
|---------------------------|------|--------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Variable Name             | Bits | Size   | Туре              | Description                                                                                                                                                               |  |  |  |  |
| Controller Mode           |      |        |                   |                                                                                                                                                                           |  |  |  |  |
| MCA_MODE                  | 7:0  | 8 bits | MC_MODE_T         | Motor control mode OFF_MC_MODE STANDBY_MC_MODE ROTATE_MC_MODE BRAKE_MC_MODE FAIL_MC_MODE DEBUG_MC_MODE                                                                    |  |  |  |  |
| Controller State          |      |        |                   |                                                                                                                                                                           |  |  |  |  |
| MCA_FSMSTATE              | 15:8 | 8 bits | MC_FSMSTATE_T     | Motor control FSM state IDLE_MC_FSMSTATE SBY_MC_FSMSTATE WNDML_MC_FSMSTATE BRAKE_MC_FSMSTATE FAIL_MC_FSMSTATE IPDORALIGN_MC_FSMSTATE RAMPUP_MC_FSMSTATE DRIVE_MC_FSMSTATE |  |  |  |  |
| Fault Status              |      |        |                   |                                                                                                                                                                           |  |  |  |  |
| OV                        | 16   | 1 bit  | fault/status flag | Over voltage                                                                                                                                                              |  |  |  |  |
| UV                        | 17   | 1 bit  | fault/status flag | Under voltage                                                                                                                                                             |  |  |  |  |
| ОТ                        | 18   | 1 bit  | fault/status flag | Over temperature                                                                                                                                                          |  |  |  |  |
| OC                        | 19   | 1 bit  | fault/status flag | Over current latch                                                                                                                                                        |  |  |  |  |
| EE                        | 20   | 1 bit  | fault/status flag | EEPROM error                                                                                                                                                              |  |  |  |  |
| RS                        | 21   | 1 bit  | fault/status flag | Rotor stalled latch                                                                                                                                                       |  |  |  |  |
| NMS                       | 22   | 1 bit  | fault/status flag | No-motor start detection                                                                                                                                                  |  |  |  |  |
| OK                        | 23   | 1 bit  | fault/status flag | System OK                                                                                                                                                                 |  |  |  |  |
| Motor Control Status      |      |        |                   |                                                                                                                                                                           |  |  |  |  |
| VQ_LIM                    | 24   | 1 bit  | fault/status flag | V <sub>q</sub> limit                                                                                                                                                      |  |  |  |  |
| VD_LIM                    | 25   | 1 bit  | fault/status flag | V <sub>d</sub> limit                                                                                                                                                      |  |  |  |  |
| SPD_LIM                   | 26   | 1 bit  | fault/status flag | Speed limit                                                                                                                                                               |  |  |  |  |
| PWR_LIM                   | 27   | 1 bit  | fault/status flag | Power limit                                                                                                                                                               |  |  |  |  |
| VGEN_LIM                  | 28   | 1 bit  | fault/status flag | Voltage (generator mode) limit                                                                                                                                            |  |  |  |  |
| OVV_LIM                   | 29   | 1 bit  | fault/status flag | Over voltage variable limit                                                                                                                                               |  |  |  |  |
| ROT_SYNC                  | 30   | 1 bit  | fault/status flag | Rotor synchronized                                                                                                                                                        |  |  |  |  |
| [Reserved (zero)]         | 31   | 1 bit  | zero              | Reserved—reads as zero                                                                                                                                                    |  |  |  |  |



## 48 V Sensorless Code-Free FOC BLDC Motor Controller

#### I<sup>2</sup>C Command Register, REF\_CMD

This register is used with the I<sup>2</sup>C external command source to set the demand value and to control the motor direction.

| I <sup>2</sup> C Address (Hex) | Bits | Value     | Name      | Description                   |
|--------------------------------|------|-----------|-----------|-------------------------------|
| 0001                           | 15:0 | [0 32767] | demand    | Sets the speed control demand |
| 0001                           | 16   | [0 1]     | direction | Sets the motor spin direction |



#### **SW FIXED-ADDRESS VARIABLES**

With I<sup>2</sup>C, it is possible to access status variables that reside at fixed addresses. Addresses of these variables, their types, and sizes are provided in the table that follows.

| Variable Name   | Address                      | Size | Туре             | Description                                                                                                                                                             |
|-----------------|------------------------------|------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPCI_VALUE      | 0x0385                       | 4B   | UINT32_T         | Interface variable of multi-purpose control interface (MPCI): Bits [15:0] = Data written into MPCI Bits [32:16] = MPCI Instruction (code of functionality to execute)   |
| MCA_THETA       | 0x0386 [LSB, 15:0]           | 2B   | INT16            | Start rotor position, 9-bit resolution (0.3515625° per bit): -512 (sign extended to 16 bits) = -180° 511 = 179.99° 0 = 0°                                               |
| MCA_FREQ        | 0x0386 [MSB, 31:16]          | 2B   | INT16            | Start rotor frequency, SFOC_FREQ_RES (NVM parameter) resolution, sign represents rotation direction: Negative = Clockwise Positive = Counterclockwise Zero = Stationary |
| MCA_COMMAND     | 0x0387 [LSB, 15:0]           | 2B   | INT16            | Current value of command after UCC; 15-bit resolution, signed: -32768 = Maximum negative command (-100%) 32767 = Maximum positive command (99.99%) 0 = 0 command (0%)   |
| IPD_ERRSTATUS   | 0x0387 [bit position, 23:26] | 1B   | IPD_ERRSTATUS_T  | IPD execution status: 0 = OK (IPD finished successfully) 1 = STG1_ERROR_INDUCT_EQUAL_IPD 2 = STG2_ERROR_TIMEOUT_IPD 3 = STG2_ERROR_EQUAL_SATURATION_IPD                 |
| WNDML_ERRSTATUS | 0x0387 [MSB, 31:24]          | 1B   | WNDMLERRSTATUS_T | Windmill execution status: 0 = OK (windmill completed successfully) ERR_BEMF_SEQUENCE_WNDML ERR_BEMF_VALUE_WNDML                                                        |
| MCA_EXTCMD      | 0x0388 [LSB, 15:0]           | 2B   | UINT16           | Input of the curve transformer                                                                                                                                          |
| V_BUS           | 0x038A [LSB, 15:0]           | 2B   | UINT16           | V <sub>BB</sub> voltage:<br>V <sub>BB</sub> = (value) × [(2 × 1.2/4096) × 40] [V]                                                                                       |
| V_CMD           | 0x038A [MSB, 31:16]          | 2B   | UINT16           | Voltage command, 12-bit resolution                                                                                                                                      |
| I_BUS           | 0x038B [LSB, 15:0]           | 2B   | INT16            | I <sub>BB</sub> current, signed:<br>I <sub>BB</sub> = 1.5 × (value/2048) × (0.57735) × maximum current [A]                                                              |
| FG_FREQ         | 0x038C                       | 4B   | INT32            | FG frequency, SFOC_FREQ_RES resolution, sign represents rotation direction: Negative = Clockwise Positive = Counterclockwise Zero = Stationary                          |
| VBEMF           | 0x038D [LSB, 15:0]           | 2B   | INT16            | Back-EMF voltage (available in position-observer closed-loop mode of operation), signed:  V <sub>BEMF</sub> = (value/16384) × (0.57735) × (nominal voltage, V) [V]      |



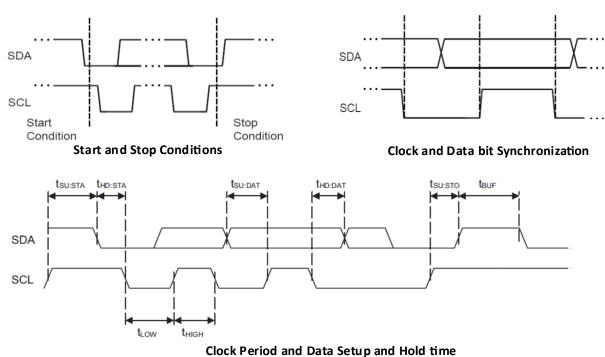
#### **FOC INTERNAL VARIABLES**

| Variable Name | Address | Size | Туре  | Description                                                                                                                                                                                  |
|---------------|---------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| THETA_EST     | 0x04A1  | 4B   | INT32 | Start rotor position, 9-bit resolution (0.3515625° per bit): $-512$ (sign extended to 32 bits) = $-180^{\circ}$ 511 = $179.99^{\circ}$ 0 = $0^{\circ}$                                       |
| FREQ_EST      | 0x04A0  | 4B   | INT32 | Current rotor frequency, SFOC_FREQ_RES resolution, sign represents rotation direction:  Negative = Clockwise  Positive = Counterclockwise  Zero = Stationary                                 |
| ID            | 0x04A2  | 4B   | INT32 | D-axis current, signed: I <sub>D</sub> = (value/2048) × maximum current [A]                                                                                                                  |
| IQ            | 0x04A3  | 4B   | INT32 | Q-axis current, signed:<br>I <sub>q</sub> = (value/2048) × maximum current [A]                                                                                                               |
| VD            | 0x04A4  | 4B   | INT32 | D-axis voltage, signed: V <sub>d</sub> = (value/16384) × (0.57735) × (nominal voltage, V) [V]                                                                                                |
| VQ            | 0x04A5  | 4B   | INT32 | Q-axis voltage, signed:<br>$V_q = (value/16384) \times (0.57735) \times (nominal voltage, V) [V]$                                                                                            |
| HSD           | 0x04B1  | 4B   | INT32 | D-axis duty cycle, signed: HS <sub>d</sub> = (value)/{(PWM period, in clock periods) × [1 + (PWM high-resolution mode, 0/1 if disabled/enabled)] × (0.57735)}, in parts                      |
| HSQ           | 0x04B2  | 4B   | INT32 | Q-axis duty cycle, signed: $HS_q = (value)/\{(PWM \ period, in \ clock \ periods) \times [1 + (PWM \ High \ Resolution \ mode, 0/1 \ if \ disabled/enabled)] \times (0.57735)\}, in \ parts$ |



#### PROGRAMMING THE EEPROM

The NVM is read and written using the I<sup>2</sup>C interface.


#### I<sup>2</sup>C SERIAL INTERFACE

The A89333 uses a standard fast-mode I<sup>2</sup>C serial port format to program the EEPROM or to control the IC operation serially. With the help of the GUI, the user can adjust configuration register values for a particular application before programming these parameters into EEPROM. The A89333 7-bit peripheral address is 0x55.

The I<sup>2</sup>C interface shares pins with PWM/SPD or FG/RD. The PWM/SPD pin functions as the clock (SCL) input, and the FG/RD pin is the data line (SDA). A special sequence is not needed to begin transferring data. If the motor is running, the FG may pull the data line low while trying to initialize in serial port mode. Once an I<sup>2</sup>C command is sent, the PWM input is ignored. For more information, refer to the VBB, UV, and NVM Reprogramming section.

Because RD is typically low when faults are not present, if the FG/RD option is set to RD, the establishment of an  $I^2C$  communication requires the RD pull-down to be disabled by reducing  $V_{BB}$  to less than  $V_{BBUVLO}$ . For more information, refer to the VBB, UV, and NVM Reprogramming section.

#### I<sup>2</sup>C Timing Diagrams



Clock Period and Data Setup and Hold time

Figure 19: I<sup>2</sup>C-Compatible Timing Requirements



#### **READ PROCEDURE**

- 1. Start condition
- 2. (1 byte) 7-bit I<sup>2</sup>C peripheral address (device ID) 1010101, R/W bit = 1
- 3. (1 byte) Fixed bit = 1, bits [6:0] of the internal register address
- 4. (1 byte) Fixed bit = 1, bits [13:7] of the internal register address
- 5. (4 bytes) read four data bytes, least significant byte first, the last byte should be NACK'd by the controller
- 6. Stop condition



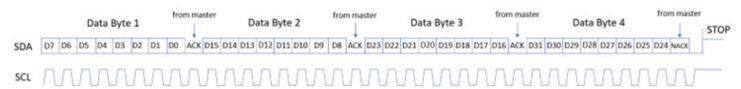
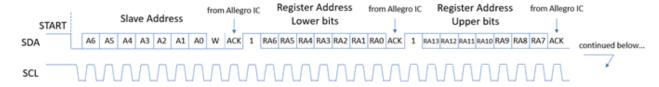




Figure 20: Read Procedure

#### WRITE PROCEDURE

- 1. Start condition
- 2. (1 byte) 7-bit I<sup>2</sup>C peripheral address (device ID) 1010101, R/W Bit = 0
- 3. (1 byte) Fixed bit = 1, bits [6:0] of the internal register address
- 4. (1 byte) Fixed bit = 1, bits [13:7] of the internal register address
- 5. (4 bytes) four data bytes, least significant byte first
- 6. Stop condition



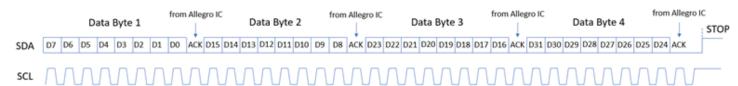



Figure 21: Write Procedure



### 48 V Sensorless Code-Free FOC BLDC Motor Controller

#### **Operation Modes and Customer Password Protection**

A89333 implements customer password protection of I<sup>2</sup>C access to certain regions of memory space—foremost, the copy of customer settings in shadow registers.

The A89333 operation modes are:

| Name                  | Description                                                                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application Mode (AM) | I <sup>2</sup> C has access to user registers and fixed-address variables Default mode after power up                                                    |
| User Mode (UM)        | I <sup>2</sup> C has access to user registers, fixed-address variables, FOC internal variables, shadow registers, and NVM EEPROM configuration registers |

The password length is 16 bits, and the password is set by the customer by configuring the corresponding parameter (CUSTOMER PASSWORD) in the NVM. (Alternatively, the password can be set by Allegro, upon first-part configuration.)

All combinations other than 0x0000 and 0xFFFF are considered valid passwords.

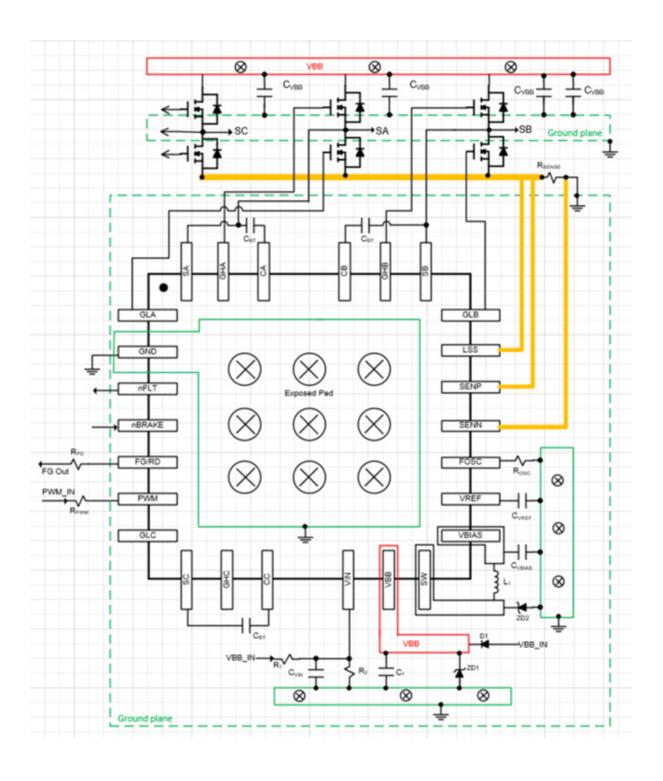
If a password combination is set to 0x0000 or 0xFFFF, the customer password is not configured and the part enters user mode after POR. In this way, when the part arrives, the customer has access to NVM EEPROM to set the user mode password (by configuring the corresponding parameter, CUSTOMER\_PASSWORD, in NVM). Once the user mode password is configured, the part enters application mode after POR and the EEPROM NVM and shadow registers are protected.

To change the operation mode, write to the MPCI\_VALUE\_GLOBAL variable via the I<sup>2</sup>C 32-bit frame. The variable (MPCI\_VALUE\_GLOBAL) consists of two parts, each 16 bits wide:

- 1. Instruction code is contained in the MSBs [31:16]; the instruction code for the customer password check is 0x01.
- 2. Data (i.e., password combination) is contained in the LSBs [15:0].

| Functionality              | Instruction Code | Example of Transaction Content Value [1]                                     | Execution                                                                                                                                                                                                                                   |
|----------------------------|------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Customer<br>Password Check | 0x01             | Bits [31:16] = 0x01, instruction code<br>Bits [15:0], password to be entered | The device acknowledges Customer password entry by rewriting Instruction code and Data (bits [31:0]) with zero (0x00) and performs password check.  Customer password entry and check can be executed in any state of the motor controller. |

[1] This is the value written into the MPCI\_VALUE\_GLOBAL variable via the I<sup>2</sup>C 32-bit frame.


If a valid customer password is configured, the controller remains in the application operation mode, where user registers and fixed-address variables can be accessed, until the configured password is correctly entered with MPCI\_VALUE\_GLOBAL.

Once the password is entered correctly, the controller enters the user operation mode and the following configuration registers can be accessed: user registers, fixed-address variables, FOC internal variables, shadow registers, and NVM EEPROM.

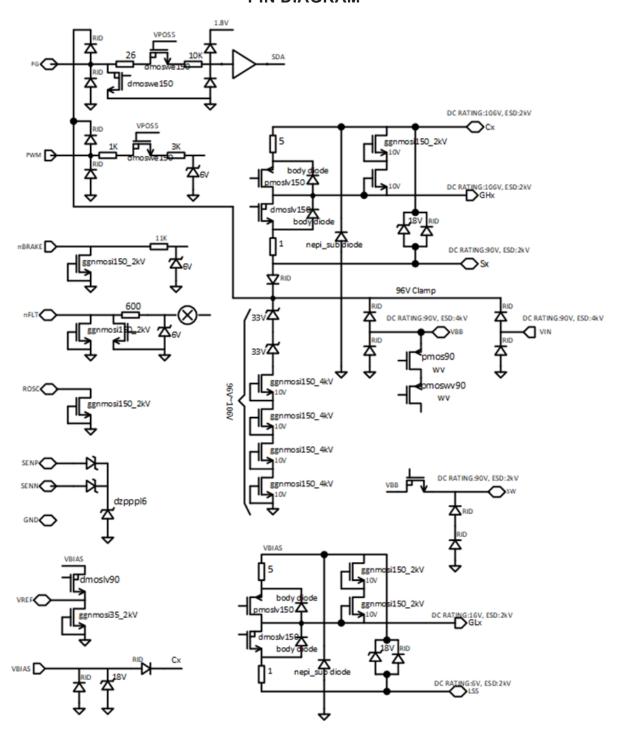
If an incorrect combination is entered three times in a row using MPCI\_VALUE\_GLOBAL, the controller must be rebooted (by POR) before further checks of the customer password can be performed.



#### **APPLICATION INFORMATION**






| Name                                | Suggested                  | Comment                                                                                      |
|-------------------------------------|----------------------------|----------------------------------------------------------------------------------------------|
| C <sub>VREF</sub>                   | 4.7 μF/X5R/10 V            | Ceramic capacitor required                                                                   |
| C <sub>VBB</sub>                    | 10 μF – 47 μF/100 V        | Power-supply stabilization; electrolytic or ceramic OK                                       |
| R <sub>PU</sub> , R <sub>FGPU</sub> | 10 kΩ                      | Pull-up resistors to VREF                                                                    |
| C <sub>BT</sub>                     | 0.22 μF/50 V               | Bootstrap capacitor, ceramic capacitor required                                              |
| C <sub>VBIAS</sub>                  | 10 μF/25 V                 | Ceramic capacitor required                                                                   |
| C1                                  | 0.1 – 0.47 μF/100 V        | Ceramic capacitor required                                                                   |
| D1                                  | HSM8100JE3/TR13            | Required to isolate motor for reverse-polarity protection                                    |
| ZD1                                 | SMBJ48A                    | TVS to limit maximum V <sub>BB</sub> due to transients due to motor generation on power line |
| L1                                  | 10 μH (994-PFL4514-103MEC) | Higher value of inductor can also be used; ensure inductor is not saturated                  |
| ZD2                                 | SDM1100LP-7                | Schottky diode required; ensure current rating is high enough to handle the inductor current |
| R <sub>FG</sub> , R <sub>PWM</sub>  | 500 Ω                      | Isolate IC pins from noise or overvoltage transients or protect from connector issues        |
| R <sub>OSC</sub>                    | 25 kΩ ± 0.1%               | Required for better oscillator accuracy                                                      |
| R <sub>sense</sub>                  | 100 mΩ ± 1%                | Current sense resistor and value depends on the maximum current of the system                |
| R1                                  | 10 kΩ                      | Required for reverse polarity protection VIN pin                                             |
| R2                                  | 10 kΩ                      | Pull-down for VIN                                                                            |
| C <sub>VIN</sub>                    | 0.1 μF                     | Noise filter for hot-swap events                                                             |

#### **LAYOUT NOTES**

- 1. Add thermal vias to exposed pad area.
- 2. Add ground plane on top and bottom of PCB.
- 3. Place  $R_{\text{sense}}$  close to the bridge and use Kelvin sensing.
- 4. Place C<sub>VREF</sub> and C1 as close as practical to the IC, connected to the GND plane.
- 5. Place L1, ZD2 and  $C_{\mathrm{VBIAS}}$  as close as practical to the IC, connected to the GND plane.
- 6. Place C<sub>BT</sub> as close as practical to the IC.
- 7. Place  $C_{VBB}$  close to the  $V_{BB}$  power rail of the external FETs.



#### **PIN DIAGRAM**





#### PACKAGE OUTLINE DRAWING

### For Reference Only – Not for Tooling Use (Reference Allegro DWG-0000222, Rev. 4) NOT TO SCALE

All dimensions nominal unless otherwise stated - Dimensions in millimeters Exact case and lead configuration at supplier discretion within limits shown

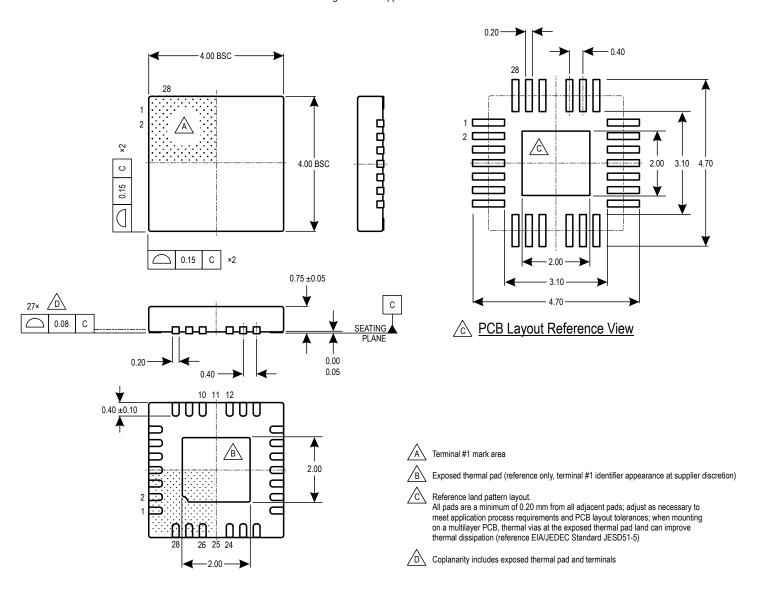



Figure 22: EC Package, 28-Pin QFN with Exposed Pad

### 48 V Sensorless Code-Free FOC BLDC Motor Controller

#### **Revision History**

| Number | Date             | Description                                                                 |
|--------|------------------|-----------------------------------------------------------------------------|
| _      | July 24, 2024    | Initial release                                                             |
| 1      | October 25, 2024 | Updated Speed Setpoint and System Oscillator characteristic values (page 7) |
| 2      | January 31, 2025 | Updated PWM/SPD section (page 8)                                            |

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

