

Allegro MicroSystems reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

APM80950

Automotive-Grade, Low-EMI, 1.5 A PWM Dimmable Synchronous Buck LED Module

FEATURES AND BENEFITS

- Automotive AEC-Q100 qualified
- Supply voltage 4.5 to 36 V, maximum 40 V
- Complete 1.5 A maximum output compact LED driver
- Integrated inductor, VIN, and boot capacitors
- Ultra-low EMI architecture, $f_{SW} > 2$ MHz
- Spread spectrum for improved EMC
- Integrated high-side and low-side MOSFETs: 80 m Ω / 60 m Ω_{TP} , 90% efficiency at 1 A
- 5 V, 14 mA LDO regulator for peripheral circuits
- Dimming via external PWM or EN pin
- Analog dimming for brightness calibration and thermal foldback
- Low power shutdown (1 μA typical)
- High side current sense, $\pm 3\%$ accuracy
- Fault flag output
- LED open fault mask setting for low VIN operation
- Undervoltage lockout (UVLO) and thermal shutdown protection
- Robust protection against:
- \Box Adjacent pin-to-pin short
- □ Pin-to-ground short
- □ Component open/short faults

PACKAGE:

32-pin QFN $4 \text{ mm} \times 6 \text{ mm} \times 2.1 \text{ mm}$ with wettable flank (suffix NB)

Not to scale

DESCRIPTION

The APM80950 is a complete synchronous buck switching regulator module that provides constant current output to drive high-power LEDs. It integrates both high-side and low-side N-channel switches, inductor, high frequency VIN and boot capacitors. A true average current is output using a cycle-bycycle, controlled on-time method.

Output current is user-selectable by an external current sense resistor. Output voltage automatically adjusts to the LED string voltage to ensure optimal system efficiency.

LED dimming is accomplished by a direct logic input pulsewidth modulation (PWM) signal at the PWM pin while EN is enabled. Alternatively, applying a PWM signal at the EN pin while the PWM pin is high provides "chopped battery" PWM dimming for legacy control modules.

The analog dimming input (ADIM pin) can be used to calibrate the LED current or implement thermal foldback in conjunction with an external NTC thermistor.

The APM80950 is provided in a compact, thermally enhanced $4 \text{ mm} \times 6 \text{ mm} \times 2.1 \text{ mm QFN-32 package with wettable flanks.}$

APPLICATIONS:

- Daytime running lights
- Front and rear fog lights
- Turn/stop lights
- Map light
- Dimmable interior lights
- Puddle lights

SELECTION GUIDE

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

THERMAL CHARACTERISTICS*: May require derating at maximum conditions; see application section for optimization

*Additional thermal information available on the Allegro™ website.

PINOUT DIAGRAM AND TERMINAL LIST

QFN-32 Pinout Diagram

Figure 2: Functional Block Diagram

ELECTRICAL CHARACTERISTICS: Valid at V_{VIN} = 12 V, V_{VOUT} = 6 V, T」 = –40°C to 125°C, typical values at T」 = 25°C, **unless otherwise noted**

Continued on the next page…

ELECTRICAL CHARACTERISTICS (continued): Valid at V_{VIN} = 12 V, V_{VOUT} = 6 V, T_J = -40°C to 125°C, typical values at **TJ = 25°C, unless otherwise noted**

[1] Determined by design and characterization. Not production tested.

[2] In test mode, a ramp signal is applied between CSH and CSL pins to determine the $\rm V_{CSH}$ – $\rm V_{CSL}$ regulation threshold voltage. In actual application, the average $V_{CSH} - V_{CSL}$ voltage is regulated at V_{CSREG} regardless of ripple voltage.

[3] Negative current is defined as coming out of (sourcing) the specified device pin or node.

V_{VIN} = 12 V, T_A = 25°C, Load = 2 series white LEDs, I_{LED} = 0.5 A, with EMI filters, as shown in [Figure 3](#page-8-1)

EN55025/CISPR25 Class 5 Peak and Average Conducted Emissions (150 kHz to 108 MHz)

EN55025/CISPR25 Class 5 Peak and Average Biconical Radiated Emissions (Horizontal, 30 MHz to 330 MHz)

EN55025/CISPR25 Class 5 Peak and Average Rod Antenna Radiated Emissions (150 kHz to 30 MHz)

EN55025/CISPR25 Class 5 Peak and Average Biconical Radiated Emissions (Vertical, 30 MHz to 330 MHz)

Figure 3: EMC test circuit

THERMAL PERFORMANCE CHARACTERISTICS

 V_{VIN} = 12 V, 2 WLEDs / 1 A, η = 89% V_{VIN} = 24 V, 2 WLEDs / 1 A, η = 82%

FUNCTIONAL DESCRIPTION

The APM80950 is a complete low-EMI synchronous buck regulator module designed for driving a high-current LED string. The operational V_{VIN} range is from 4.5 to 36 V, and it can withstand up to 40 V input transients. This module can regulate LED current from 200 mA to 1.5 A, depending on thermal management. It uses average current mode control to maintain constant LED current for consistent brightness.

The LED current level is easily programmable by selection of an external sense resistor, with a value determined as follows:

$$
R_{\rm SENSE} = V_{\rm CSREG} / i_{\rm LED}
$$

There are two options of V_{CSREG} for high or low output current range. If output LED current is between 0.6 and 1.5 A, the RNG pin should be connected to logic high signal (VCC) or left open. If output LED current is between 200 and 600 mA, the RNG pin should be connected to GND for reduced power dissipation.

Table 1: RNG setting for suggested LED Output Current Range

RNG	V_{CSRFG}	^I LED
High	200 mV (typical)	0.6 to 1.5 A
Low	100 mV (typical)	200 to 600 mA

Synchronous Regulation

The APM80950 integrates an N-channel DMOS as the low-side and high-side switches to implement synchronous regulation for LED drivers, as shown in [Figure 4](#page-9-1).

Figure 4: Synchronous Buck LED Driver

The synchronous configuration can effectively pull SW to GND by forcing the low-side synchronous switch on even with small inductor current. Therefore, the internal boot capacitor can be

charged normally every switch cycle to ensure the normal operation of the buck LED driver.

An extremely low switch deadtime ensures that minimal power is dissipated during the high-side switch turn-on transition. This low deadtime also reduces EMI. The integrated VIN to PGND capacitor significantly reduces the high-current input loop length, greatly reducing the radiated emissions.

Switching Frequency

The APM80950 operates in fixed on-time mode during switching. The on-time (and hence switching frequency) is programmed by an internal circuit to keep switching frequency at around 2 MHz across the operating range. Note that t_{ON} must be greater than $t_{ON(MIN)}$, which is 80 ns (typical). If V_{VIN} is high enough to reach $t_{ON(MIN)}$, the APM80950 will maintain $t_{ON(MIN)}$ even when V_{VIN} increases further.

 $t_{ON} = \max[t_{ON(MIN)}, 1 / (2 MHz) \times (V_{VOUT} / V_{VIN})]$

The switching frequency of the converter may vary with output current due to voltage drop on the switches and inductor when conducting.

To minimize the peaks of switching frequency harmonics in EMC measurement, a spread spectrum feature is implemented. The spread spectrum range is internally set at $\pm 5\%$. The actual switching frequency is swept linearly between 0.95 \times f_{SW} and 1.05 \times f_{SW} , where f_{SW} is the programmed switching frequency. The rate of modulation for f_{SW} is fixed internally at 11.5 kHz.

Enable and Dimming

The APM80950 is activated when a logic-high signal is applied to the EN (enable) pin and V_{VIN} is above UVLO threshold, 4.31 V. The buck converter ramps up the LED current to a target level set by R_{SENSE} when PWM pin = High.

The EN pin is high-voltage tolerant and can be directly connected to a power supply. However, if V_{EN} is higher than V_{VIN} at any time, a series resistor (10 k Ω) is required to limit the current flowing into the EN pin. This resistor is helpful in preventing EN from damage in case of reverse battery connection. This series resistor is not necessary if EN is driven from a logic input.

The PWM pin is a logic input pin and is internally pulled down through a resistor. If the APM80950 is enabled before the PWM signal is asserted high, the output remains off until PWM signals start.

The EN and PWM pins function as shown in [Table 2](#page-10-0).

Table 2: EN and PWM Pin Function

When the EN pin is forced from high to low, the LED current is turned off, but the IC remains in standby mode for up to at least 10 ms. If EN goes high again within this period, the LED current is turned on immediately if PWM pin is high. If EN pin is low for more than $t_{\text{OFF(DELAY)}}$, the IC enters shutdown mode to reduce power consumption. The next high signal on EN will initialize a full startup sequence, which includes a startup delay of approximately 150 μs. This startup delay is not present during PWM operation.

Active dimming of the LED is achieved with 2 options: by sending a PWM (pulse-width modulation) signal to the EN pin (while PWM = High); or by sending a dimming PWM signal to the PWM pin while EN = High. The resulting LED brightness is proportional to the duty cycle of the applied PWM signal. A practical range for PWM dimming frequency is between 100 Hz (period 10 ms) and 2 kHz.

If the PWM dimming signal at the PWM pin is low when the EN pin is high, the LED will be off immediately, and the IC remains enabled, waiting for the next PWM pulse. The internal LDO is still on and can provide bias to the internal and external circuits.

PWM Dimming Ratio

The brightness of the LED string can be changed by adjusting the PWM duty cycle as follows:

Dimming ratio = PWM on-time / PWM period

For example, by selecting a PWM period of 5 ms (200 Hz PWM frequency) and a PWM on-time of 5 μ s, a dimming ratio of 0.1% can be achieved. This is sometimes referred to as "1000:1 dimming."

In an actual application, the minimum dimming ratio is determined by various system parameters, including: V_{VIN} , V_{VOUT} , inductance, LED current, and PWM frequency. The device is easily capable of PWM on-time as short as 5 µs; however, if fault flag for open/short LED detection is required, it should be above 130 µs due to the fault mask timer.

Analog Dimming

In addition to PWM dimming, the APM80950 also provides an analog dimming feature.

If RNG = High, when V_{ADIM} is over 1.5 V, the LED current is at 100% level (as defined by the sense resistor R_{SENSE}). When V_{ADIM} is between 0.6 and 1.3 V, the LED current changes linearly with V_{ADIM} from 20% to 90%. Within this range, the LED current reference voltage V_{CS} can be calculated as:

$$
V_{\text{CSREG}} = (V_{\text{ADIM}} - 0.4 \text{ V}) / 5
$$

This is shown in [Figure 5.](#page-10-1)

Figure 5: ADIM Pin Voltage controls the LED Current Reference Voltage with RNG = High

If RNG = Low, when V_{ADIM} is over 1.0 V, the LED current is at 100% level (as defined by the sense resistor R_{SENSE}). When V_{ADIM} is between 0.6 to 0.85 V, the LED current changes linearly with V_{ADIM} from 40% to 90%. Within this range, LED current reference voltage V_{CS} can be calculated as:

$$
V_{\text{CSREG}} = (V_{\text{ADIM}} - 0.4 \text{ V}) / 5
$$

This is shown in [Figure 6.](#page-10-2)

Figure 6: ADIM Pin Voltage controls the LED Current Reference Voltage with RNG = Low

For accurate LED current level control, the APM80950 should operate with ADIM in the linear region of 0.6 to 1.3 V for $RNG = High$ and 0.6 to 0.85 V for $RNG = Low$.

Note that the allowable voltage across the sensing resistor R_{SENSE} should lie within the range of –50 to 250 mV to avoid saturating the internal current amplifiers. The expected minimum and maximum v_{CS} can be estimated by the following equations:

$$
\min \, \, _v_{CS} = [I_{LED} - \frac{(V_{VIN} - V_{VOUT})V_{VOUT}}{19.6 \times V_{VIN}}] \times R_{SENSE}
$$
\n
$$
\max \, \, _v_{CS} = [I_{LED} + \frac{(V_{VIN} - V_{VOUT})V_{VOUT}}{19.6 \times V_{VIN}}] \times R_{SENSE}
$$

where I_{LED} is the expected LED output current.

In order to extend the operation beyond V_{CS} limits, an external inductor of 4.7 µH can be added to ensure proper operation with 5 or 6 WLEDs with VIN up to 36 V, as shown in [Figure 7:](#page-11-0)

Figure 7: An external inductor is added for 5 or 6 WLEDs operation with VIN up to 36 V

The ADIM pin can be used in conjunction with PWM dimming to provide wider LED dimming range over 1000:1. In addition, the IC can provide thermal foldback protection by using an external NTC (negative temperature coefficient) thermistor, as shown in [Figure 8.](#page-11-1)

Figure 8: Using an External NTC Thermistor to Implement Thermal Foldback

Based on the equation below, ADIM voltage will be reduced to lower the LED current for less LED power when temperature rise due to LED heating causes the resistance reduction of NTC thermistor.

 $V_{ADIM} = V_{VCC} \times ([R_{NTC} (T) + R_s) / R_n]) / ([R_{NTC} (T) + R_s) / R_n + R_1])$

Minimum and Maximum Output Voltages

With a typical minimum t_{OFF} of 100 ns, the maximum duty cycle is approximately 80%. So for V_{VIN} = 18 V, the maximum output is approximately 14.4 V (based on the simplified equation of $V_{VOUT} = V_{VIN} \times D$).

With a typical minimum t_{ON} of 80 ns, the minimum duty cycle is approximately 16%. That means with V_{VIN} = 18 V, the theoretical minimum V_{VOUT} is just 1.8 V. However, the internal current sense amplifier is only designed to operate down to V_{VOUT} = 2.65 V. Operating with V_{VOUT} < 2.65 V will result in reduced current sense accuracy.

If the required output voltage is lower than that permitted by the minimum t_{ON} , the controller will automatically extend the t_{OFF} , in order to maintain the correct duty cycle. The result is that the switching frequency is reduced, in order to keep the LED current in regulation.

If the LED string is completely shorted (V_{VOUT} < 1.5V typical), the controller will continue to switch at minimum t_{ON} and will not enter Hiccup mode.

Thermal Budgeting

The APM80950 can supply a 1.5 A current to the LED string. However, depending on the duty cycle, the conduction loss in the high-side and low-side switches, and loss in the inductor may cause the package to reach the thermal shutdown threshold. Therefore, care must be taken to ensure the total power loss of the APM80950 is within budget. For example, if the maximum temperature rise allowed is $\Delta T = 60^{\circ}\text{C}$ at the device case surface, then the maximum power dissipation of the module is 2 W when mounted to Allegro's 4-layer PCB which has an $R_{\theta JA}$ of 30°C/W. When considering the switching and conduction losses within the APM80950, the estimated maximum LED current is limited to 1.5 A.

Fault Handling

The APM80950 is designed to handle the following faults.

- Pin-to-ground short
- Pin-to-neighboring pin short
- Pin open
- Opens/shorts on some external components
- Output short to ground

RSENSE Shorted Fault

 R_{SENSE} short detection detects shorts across the R_{SENSE} resistor, but is limited to hard shorts (very low impedance). A weak short will effectively reduce the value of the R_{SENSE} resistance, resulting in greater output current. If the inductor current limit is not reached, this will not register as a short, a fault will not be asserted, and the IC will continue to regulate at higher than programmed LED current.

LED Open/Output Short Faults

The A80950 can detect an open LED string or output short fault and assert the fault flag by pulling the FFn pin low. The LED open fault is detected by monitoring the voltage, V_{CSREG} , across the current sense resistor while the PWM signal is high, and LED short is detected when V_{OUT} < 1.5 V while V_{ADIM} > 500 mV. The fault must remain present for more than the fault deglitch time, t_{FDG} for the A80950 to act on fault condition. A fault mask timer, t_{MASK} , starts at the rising edge of each PWM cycle to mask faults when the PWM cycle starts. If the PWM on-time is less than the

fault mask timer, the fault flag will not assert. The fault flag state is latched when PWM goes low to maintain its high or low state until the next PWM rising edge.

If an open LED fault is detected, the regulator will enter hiccup mode and assert the fault flag. If the open LED fault condition is removed, the fault flag is released after the next PWM rising edge and completion of either the hiccup timer or current to regulation timer; see cases 5, 6, and 7 in the LED Open/Short fault timing diagrams. The open LED fault is masked and will not assert the fault flag if either of two conditions is met: V_{FDSET} is below V_{REF1} or V_{ADIM} is below 500 mV. If the fault flag was asserted prior to either of these conditions, the fault flag will remain asserted. If the fault is removed while V_{FDSET} is below V_{REF1} or V_{ADIM} is below 500 mV, the fault flag will be released.

When an output short fault occurs, such as LED shorted to ground or output capacitor shorted to ground, the regulator will not enter hiccup mode and will continue to switch. When the short is removed, the APM80950 will return to normal operation.

Figure 9: LED Open/Short Fault Block Diagram

Figure 10: LED Open/Short Fault Timing Diagram

Table 3: LED Open Fault Truth Table

ADIM low is < 500 mV. FDSET low is when FDSET < VREF1 (typical 2.4 V).

 $*$ must be > 400 mV for FF to go high.

The Fault deglitch time t_{FDG} , is fixed and is typically 50 µs. The Fault mask time, t_{MASK} , is also fixed and is typically 100 μ s (refer to Electrical Characteristics table). The Fault timing diagram is illustrated in [Figure 11](#page-14-0):

Figure 11a: LED Short Fault Timing Diagram Overview

[Figure 11b](#page-14-0): LED Open Fault Timing Diagram Overview

The basic timing configurations are detailed below for LED Open/Short faults:

* Current to regulation timer is 256 switching cycles.

Allegro MicroSystems 955 Perimeter Road Manchester, NH 03103-3353 U.S.A. www.allegromicro.com

SYSTEM FAILURE DETECTION AND PROTECTION DEMONSTRATION

[1] For LED Open Fault, fault flag will not be asserted when V_{VIN} is below preset mask threshold, V_{ADIM} is below 500 mV or PWM dimming pulse width is below fault mask timer.

[2] For LED Short Fault, fault flag will not be asserted when V_{ADIM} is below 500 mV or PWM dimming pulse width is below fault mask timer.

Output Filter Capacitor

The APM80950 is designed to operate in current regulation mode. Therefore, it does not require a large output capacitor to stabilize the output voltage. This results in lower cost and smaller PCB area. In fact, having a large output capacitor is not recommended.

In most applications, however, it is beneficial to add a small filter capacitor (approximately 0.047 μF) very close to the CSL pin of the IC with a good connection to PGND. This capacitor serves as a filter to eliminate switching spikes seen by the LED string. This is very important in reducing EMI noises, and may also help in ESD testing.

Without output capacitor: The same inductor ripple current flows through sense resistor and LED string.

With a small capacitor across LED string: Ripple current through LED string is reduced, while ripple voltage across Rsense remains high.

Figure 13: Using an Output Filter Capacitor to Reduce Ripple Current in LED String

Effects of Output Capacitor on LED Ripple Current

APPLICATION CIRCUIT DIAGRAMS

Figure 14: Application circuit example for APM80950 with 1 A LED current.

APPLICATION CIRCUIT DIAGRAMS (continued)

APPLICATION CIRCUIT DIAGRAMS (continued)

Figure 16: Using 2 (or more) APM80950s in parallel to drive the same LED string. Total LED current is the sum of currents from each LED driver. (Note: Each LED driver shares the same VIN and ADIM as illustrated.)

Figure 17: "One Out All Out" functionality can be implemented with 2 APM80950s driving different LED strings: When one module fails (e.g. due to LED short or open),

its FFn drives other module's ADIM Low and forces to turn OFF LED current.

APPLICATION CIRCUIT DIAGRAMS (continued)

Figure 18: Application circuit example at V_{VIN} = 30 V ±10% to drive 3 red LEDs @ 1.5 A **with external PWM dimming at 30 Hz, 3% duty cycle.**

PACKAGE OUTLINE DRAWING

Figure 19: 32-pin 4 mm × 6 mm × 2.1 mm QFN with wettable flank (suffix NB)

PCB Footprint – Soldermask

Altium and Cadence schematic and layout library files for the APM80950 are provided on the APM80950 product page on Allegromicro.com.

Revision History

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

