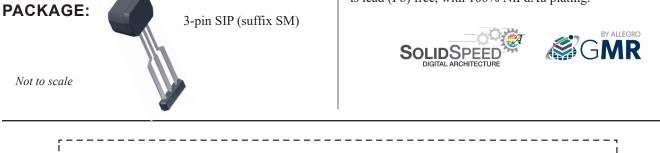


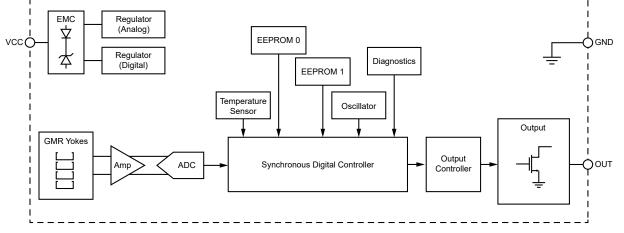
Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

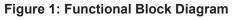
FEATURES AND BENEFITS

- **GMR technology** integrates high-sensitivity magnetoresistive (MR) sensor elements and highprecision BiCMOS circuits on a single silicon integrated circuit, offering high-accuracy, low-magnetic-field operation
- Allegro SM package with integrated electromagnetic compatibility (EMC) components eliminates need for external electromagnetic interference (EMI) protection
- **True target-state recognition** at device power-on (TPOS)
- Integrated diagnostics and certified safety design process for ASIL B compliance
- **EEPROM programming** for performance optimization, temperature compensation, and production traceability
- **Flexible orientation**: Able to be mounted at any angle with correct configuration
- Stray-field immunity: Resists aggressor stray fields found in hybrid vehicle environments
- **Backward compatibility** with Allegro Hall-effect solutions
- Target profile diagnostics

DESCRIPTION


The ATS16351 is a true power-on state (TPOS) camshaft sensor incorporating a back-biasing magnet, advanced fully synchronous digital integrated circuit (IC), and EMC protection circuit, all in a single sensing solution.


The ATS16351 incorporates a giant-magnetoresistance (GMR) bridge with an optimized custom magnetic circuit that switches in response to magnetic signals induced by a ferromagnetic target. The IC contains a sophisticated digital circuit designed to match the temperature behavior of the sensor IC with the integrated magnet. Signal processing is used to provide zerospeed performance independent of air gap and is designed for the typical operating conditions found in automotive camshaft sensing applications. The resulting output of the device is a digital representation of the ferromagnetic target profile.


The auto-TPOS feature of the ATS16351 enables the sensor IC to identify the installation air gap inside of the engine and to automatically reprogram into memory the optimal threshold for power-on accuracy.

A number of factory-programmable options allow for performance optimization to meet specific application requirements.

The ATS16351PSM is available in a 3-pin package (SM) that is lead (Pb) free, with 100% NiPdAu plating.

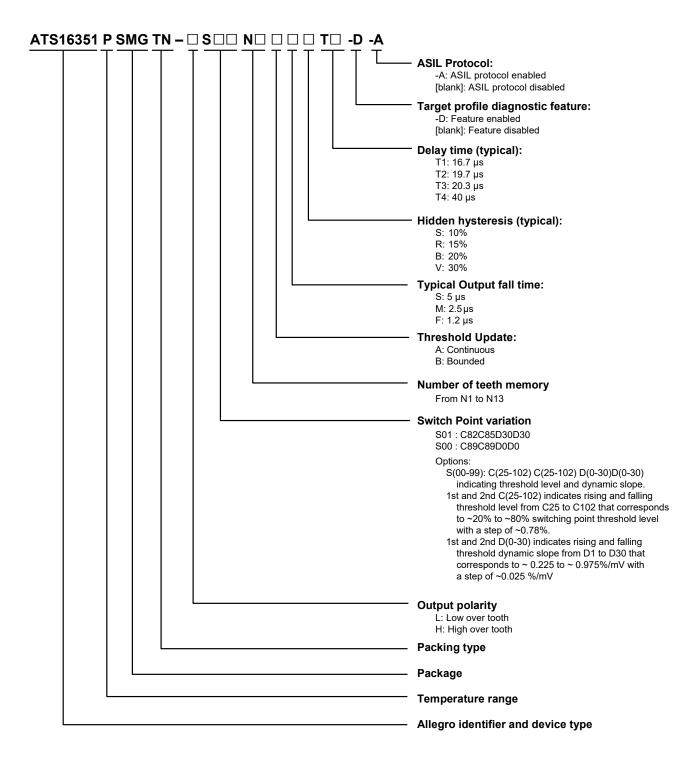
Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

PROGRAMMABLE OPTIONS

Name			Available S	elections ^[1]		
Output Polarity	Low opposite target tooth / high opposite target valley (L Option)			High opposite target tooth / low opposite target (H Option)		
Switch Point Variation	C82C85D30D30 (S01 Opti	on)		C89C89D0D0 (S0	00 Option)
	 S(00 to 99): C(25 to 102) C(25 to 102) D(0 to 30) D(0 to 30) indicates threshold level and dynamic slope: First and second C(25 to 102) indicates rising and falling threshold levels from C25 to C102, respectively corresponding to ~20% to ~80% switch point threshold levels in steps of ~0.78%. First and second D(0 to 30) indicates rising and falling threshold dynamic slope from D1 to D30, respectively corresponding to ~0.225 to ~0.975%/mV in steps of ~0.025%/mV. 					
Teeth Memory	Number of teeth (memory of	ount); pro	grammable from 1	to 13 (Nx Option)		
Threshold Update	Continuous (A Option)			Bounded:(B Option	on)	
Output Fall Time	Slow: typical 5 µs (S Optio	n)	Medium: typical 2	.5 μs (M Option)	Fast: typ	bical 1.2 μs (F Option)
Running Mode Hidden Hysteresis	10% (S Option)	15% (R	Option)	20% (B Option)		30% (V Option)
Delay Time (tradeoff of jitter vs. speed effect)	No extra delay time (smallest speed effect): 16.7 µs (T1 Option)	Small extra delay: 19.7 µs (T2 Option)		Medium extra dela 20.3 µs (T3 Optic	,	Large extra delay (best jitter performance): 40 µs (T4 Option)
Target Profiling Diagnostics	Magnetic profile available on output (-D option)			Magnetic profile u	navailable	e on output ([blank] option)

^[1] Not all combinations of programmable options are available preprogrammed from Allegro. For details, contact Allegro.

SELECTION GUIDE


Part Number*	Package	Packing		
ATS16351PSMGTN-LS01N12BFRT1-D	2 pin SID with NiDdAu loadfrome ploting	Tana and roal 800 pieces per 12 inch roal		
ATS16351PSMGTN-LS00N12BFRT1-D	3-pin SIP with NiPdAu leadframe plating	Tape and reel, 800 pieces per 13-inch reel		

^[1] Not all combinations of programmable options are available preprogrammed from Allegro. For details, contact Allegro.

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V _{CC}		27	V
Reverse Supply Voltage	V _{RCC}		-18	V
Output Voltage	V _{PU}		27	V
Reverse Output Voltage	V _{ROUT}	R _{PU} ≥ 1000 Ω	-0.5	V
Output Current	I _{OUT}	Internal current limiting is intended to protect the device from output short circuits but is not intended for continuous operation.	25	mA
Reverse Output Current	I _{ROUT}	V _{OUT} > -0.5 V, T _A = 25°C	-50	mA
Operating Ambient Temperature	T _A	Range P	-40 to 160	°C
Maximum Junction Temperature	T _{J(max)}		175	°C
Storage Temperature	T _{stg}		-65 to 170	°C
Applied Magnetic Flux Density	В	In any direction	150	G

INTERNAL DISCRETE COMPONENT RATINGS

PINOUT LIST

1

2

3

Name

VCC

GND

OUT

Symbol	Characteristic	Rating	Unit
C _{SUPPLY}	Nominal Capacitance	220	nF
C _{OUT}	Nominal Capacitance	2.2	nF
R _{SUPPLY}	Nominal Resistance	33	Ω
R _{OUT}	Nominal Resistance	20	Ω

Function

Supply voltage

Device output

Ground

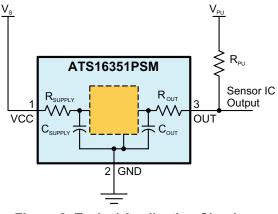


Figure 2: Typical Application Circuit

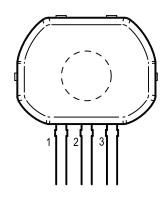


Figure 3: Pinout Diagram

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

OPERATING CHARACTERISTICS: Valid throughout full operating and temperature ranges; using Reference Target 8X,

unless otherwise noted

Characteristics	Symbol	Test Condition	ons	Min.	Typ. [1]	Max.	Unit
ELECTRICAL CHARACTERISTIC	S				· · · · · ·		
Supply Voltage	V _{CC}	Continuous operation, T _J < T _J	(max)	3.6	-	24	V
Supply Current	I _{CC}			5	7	10	mA
Supply Zener Clamp Voltage	V _{Zsupply}	$I_{CC} = I_{CC(MAX)} + 3 \text{ mA}$		27	-	_	V
Reverse Supply Zener Clamp Voltage	V _{RZsupply}	I _{CC} = –3 mA, T _A = 25°C		_	-	-18	V
OUTPUT STAGE CHARACTERIS	rics						
		Fault-detection mode disable	d; I _{OUT} = 5 mA	-	-	300	mV
		Fault-detection mode disable	d; I _{OUT} = 15 mA	-	-	800	mV
Output Low Voltage	V _{OUT_LOW}	Fault-detection mode enabled 4.75 V < V_{PU} < 5.25 V, Output 1.45 k Ω < R_{PU} < 3.39 k Ω		500	1000	1500	mV
		Fault-detection mode enabled 4.75 V < V_{PU} < 5.25 V, Output R_{PU} = 1 k Ω ^[2]		750	1150	1750	mV
	N	Fault-detection mode enabled	Fault-detection mode enabled; I _{OUT} = 5 mA		-	300	mV
Fault Voltage	V _{FAULT(LOW)}	Fault-detection mode enabled	l; l _{OUT} = 15 mA	_	-	800	mV
		Fault-detection mode disable	b	_	V _{PU}	_	mV
Output High Voltage	V _{OUT_HIGH}	Fault-detection mode enabled 4.75 V < V _{PU} < 5.25 V, Output 1.45 k Ω < R _{PU} < 3.39 k Ω	3500	4000	4500	mV	
		Fault-detection mode enabled; 4.75 V < V_{PU} < 5.25 V, Output = HIGH, R_{PU} = 1 k Ω ^[2]		3500	4000	4500	mV
Output Zener Clamp Voltage	V _{Zoutput}	I _{OUT} = 3 mA, T _A = 25°C		27	_	_	V
Output Current Limit	I _{OUT(LIM)}	Output = LOW		30	-	80	mA
Output Leakage Current	I _{OUT(OFF)}	V _{OUT} = 24 V, Output = HIGH		_	-	10	μA
Fault State Duration	t _{W(FAULT)}	Fault-detection mode enabled	1	_	5	_	ms
Output Rise Time	t _r	Measured 10% to 90% of V _{OL} R _{PU} = 1 kΩ, ^[2] V _{PU} = 5 V	JT;	-	5	-	μs
		Fault-detection mode	Fall-time option S	2.5	5	9	μs
		disabled; measured 90% to 10% of 10% of 10%	Fall-time option M	1.5	2.5	3.5	μs
		10% of V _{OUT} ; R _{PU} = 1 kΩ, V _{PU} = 5 V	Fall-time option F	0.5	1.2	2.5	μs
		Fault-detection mode	Fall-time option M	_	8		μs
Output Fall Time	t _f	disabled; Measured 90% to 10% of V _{OUT} ; R _{PU} = 1 k Ω , V _{PU} = 12 V	Fall-time option F	_	2	_	μs
		Measured 90% to 10% of V _{OUT} ; 1.45 kΩ < R _{PU} < 3.39 kΩ, V _{PU} = 5 V	Fall-time option M ^[3]	1.5	2.5	3.5	μs

^[1] Typical values are at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V. Performance may vary for individual units, within the specified maximum and minimum limits.

 $^{[2]}$ When ASIL is enabled, a resistor with a value of 1.45 k Ω < R_{PU} < 3.39 k Ω should be used.

The voltages for $R_{PU} = 1 \text{ k}\Omega$ are provided for reference information only.

 $\ensuremath{^{[3]}}$ When fault detection is enabled, the only available fall-time option is M

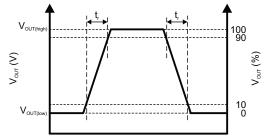


Figure 4: Output Rise Time and Output Fall Time

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

OPERATING CHARACTERISTICS (continued): Valid throughout full operating and temperature ranges;

using Reference Target 8X, unless otherwise noted

Characteristics	Symbol	Note		Min.	Typ. ^[1]	Max.	Unit
PERFORMANCE CHARACTERIST	ICS		· · · · ·			· · · · · ·	
Operational Air Gap Range	AG	TPOS guaranteed		1.5	-	4	mm
Extended Operational Air Gap Range		Running mode switching,	TPOS not guaranteed	_	-	4.5	mm
Signal Bandwidth	BW	Equivalent to -3 dB cutoff	frequency	_	>8	-	kHz
		Electrical folling address	Option T1	_	16.7	_	μs
Dhana Dalau		Electrical falling edges; $R_{PU} = 1 k\Omega$, $V_{PU} = 5 V$;	Option T2	_	19.7	_	μs
Phase Delay		fall time to be added to	Option T3	_	20.3	-	μs
		this value Option T4		_	40	_	μs
POWER-ON CHARACTERISTICS		·				· · · · · ·	
Power-On Time [2]	t _{PO}	f_{OP} < 100 Hz, time from when V _{CC} > V _{CC(MIN)} to when IC enters calibration mode		_	_	1	ms
TPOS Mode		Number of mechanical edges after power-on with output switching upon TPOS threshold		_	N	N + 3 ^[3]	tooth
Learning Mode		Number of target teeth after TPOS mode with reduced-accuracy threshold-based output switching	M Option	_	_	1	tooth

^[1] Typical values are at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V. Performance may vary for individual units, within the specified maximum and minimum limits.

^[2] Power-on time consists of the time from when V_{CC} increases to greater than V_{CC(MIN)} to when a valid output state is realized. ^[3] For every case of air gap < 3.5 mm, there are n teeth. For some particular startup angles and air gaps that are > 3.5 mm, it is possible for 1 to 3 extra teeth to switch upon TPOS before the transition to the typical switch point.

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

OPERATING CHARACTERISTICS (continued): Valid throughout full operating and temperature ranges;

using Reference Target 8X, unless otherwise noted

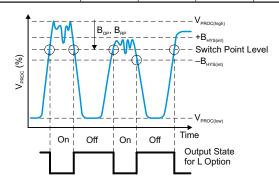
Characteristics	Symbol	Note	Min.	Typ. ^[1]	Max.	Unit	
OPERATING MODE CHARACTER	ISTICS					· · · · · · · · · · · · · · · · · · ·	
		Opposite target tooth,	L option	Low			V
Output Delevity	V	connected as in Figure 2	H option		High		V
Output Polarity	V _{OUT}	Opposite target valley,	L option		High		V
		connected as in Figure 2	H option		Low		V
Threshold Update Memory	Ν	Number of target teeth (per memory for threshold-upd		1	_	13	tooth
Rising Threshold	B _{OP}	% of peak-to-peak, referen Programmable with a step Defined as Cx in the progr	of 0.78%.	20 [2]	_	80 [3]	%
Falling Threshold	B _{RP}	% of peak-to-peak, referenced to tooth signal. Programmable with a step of 0.78%. Defined as Cx in the programming options		20 [2]	_	80 [3]	%
Rising Threshold Slope	S _{OP}	Slope for rising dynamic-th Programmable with a step Set to 0 to disable ^[4] . Defined as Dx in the progr	0.225	_	0.975	%/mV	
Falling Threshold Slope	S _{RP}	Slope for falling dynamic-threshold feature. Programmable with a step of 0.025. Set to 0 to disable ^[4] . Defined as Dx in the programming options.		0.225	_	0.975	%/mV
			S option	_	10	_	%
Demois a Maria Ubartana da	P	Programmable option %	R option	_	15	_	%
Running Mode Hysteresis	B _{HYS(int)}	of peak-to-peak signal	B option	_	20	_	%
			V option	_	30	-	%
Maximum Allawable Signal Daduction		Reduction in magnetic-signal amplitude between two consecutive peaks; all specifications within range.		_	_	B _{OP} – 15%	%
Maximum Allowable Signal Reduction	B _{reduce}	Reduction in magnetic-sig two consecutive peaks; ou accuracy performance not	itput switches,	_	_	В _{ОР} – 5%	%

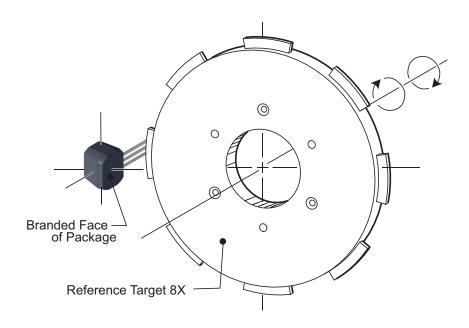
^[1] Typical values are at $T_A = 25^{\circ}C$ and $V_{CC} = 5$ V. Performance may vary for individual units, within the specified maximum and minimum limits.

 $^{[2]}$ This is the minimum value that can be programmed if hidden hysteresis is set at 15% If hidden hysteresis is not 15%, this limit becomes such that: (B_{OP} or B_{RP)} – hidden hysteresis > 5%.

^[3] This is the maximum value that can be programmed if hidden hysteresis is set at 15% If hidden hysteresis is not 15%, this limit becomes such that: (B_{OP} or B_{RP}) + hidden hysteresis < 95%.

[4] For more details about the dynamic threshold feature, see the Switch Points and Hysteresis section.



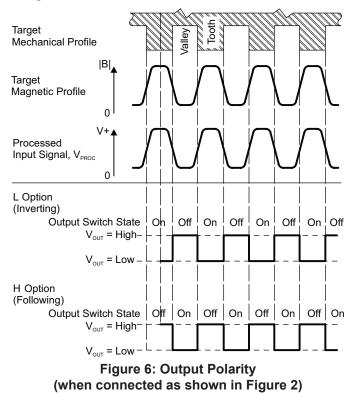

Figure 5: Switch Points with Internal Hysteresis

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

REFERENCE TARGET 8X

Characteristic	Symbol	Test Conditions	Тур.	Units	Symbol Key
Outside Diameter	Do	Outside diameter of target	120	mm	øD _{on} h _t الم
Face Width	F	Breadth of tooth, with respect to branded face	6	mm	Branded Face
Circular Tooth Length	t	Length of tooth, with respect to branded face; measured at D_{o}	23.6	mm	
Circular Valley Length	t _v	Length of valley, with respect to branded face; measured at D _o	23.6	mm	
Tooth Whole Depth	h _t		5	mm	
Material		CRS 1018	-	_	

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC


FUNCTIONAL DESCRIPTION

Sensing Technology

The ATS16351 contains a GMR bridge with an optimized custom magnetic circuit that switches in response to magnetic signals induced by a ferromagnetic target. The IC includes a self-calibrating GMR element that senses differences in magnetic-field strength induced by ferromagnetic-target teeth and valleys. The sensor generates a digital output signal that is representative of the target features, independent of the direction of target rotation or rotational orientation. The transducer and the electronics are integrated on the same silicon substrate by a proprietary BiCMOS process. Changes in temperature do not negatively affect this device due to the stable amplifier design and advanced digital temperature compensation. The IC also contains a voltage regulator that provides undervoltage lockout and supply-noise rejection over the operating voltage range.

Target Profiling

The polarity of the output is selectable to be either low opposite target teeth (L option) or high opposite target teeth (H option). See Figure 6.

Threshold Update

The ATS16351 has two sets of programmable options that determine the threshold update used to establish running-mode switching levels. The positive-peak threshold update is set to n teeth, programmable between 1 and 13. The negative-peak threshold update can be set for continuous updates or bounded updates.

With single-tooth update (n = 1), the switching threshold for a tooth is established based on the measured peak value of the previous tooth. This option can be used with targets having any number of teeth and is comparable to the continuous-update mode used in many Allegro sensors.

When n = 2 through 13, the device uses memory-based updates. Peak data from the previous *n* teeth is stored in on-chip memory. The switching threshold for an upcoming tooth is established based on the data stored *n* teeth earlier. When *n* is matched to the number of teeth on the target, switch points are optimized based on the same tooth from the previous revolution of the target. The programmable threshold update results in improved output switching accuracy on targets with runout and tooth-to-tooth variation (including narrow valleys).

With continuous update (A option), the switching threshold for a tooth is based on the measured valley value of the previous tooth. This option provides backward compatibility equivalent to some older generations of Allegro TPOS camshaft cells.

With bounded update (B option), large tooth-to-tooth changes in the negative-peak tracking are filtered out and are not applied to switching-threshold generation. This option provides improved output accuracy on camshaft targets with narrow valley widths.

Switch Points and Hysteresis

The running-mode switch points in the ATS16351 are established dynamically as a percentage of the tracked peaks and valleys, as described in the Threshold Update section. The method that determines the switch-point level uses either classic fixed switch points or dynamic switch points. With classic fixed switch points, the switch-point levels can be programmed from 20% to 80% (when default hidden hysteresis is selected) in steps of 0.78%. If hidden hysteresis is not 15%, this limit becomes such that: B_{OP}/B_{RP} + hidden hysteresis < 95% and B_{OP}/B_{RP} – hidden hysteresis < 5%. If fixed classic switch-point levels are desired, slope programming should be set to 0. If a slope is selected, dynamic switch points are activated. This mode determines the best

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

switch-point level per air gap for a given target and a given hard offset. To learn how to program this for a specific target, contact Allegro.

Internal hysteresis allows for high-performance switching accuracy on both rising and falling edges while maintaining immunity to false switching on noise, vibration, backlash, or other transient events (see Figure 5). The default value of this hidden hysteresis is 15% (typical). Different values are possible, up to 10%, 15%, 20%, or 30%; contact Allegro for parts with higher hidden hysteresis. A higher hidden hysteresis allows for higher immunity to noise, vibration, or stray field. The downside of having a high hidden hysteresis is the limitation on signal reduction or tooth-to-tooth variation. Also having different values for the switch-point levels as described on previous paragraphs.

Operating Modes

TPOS MODE

After power-on, the output state is determined by the level of the detected magnetic field relative to the fixed-gauss TPOS threshold, which is programmed at Allegro. The device remains in TPOS mode for a number of edges that is dependent on the selected TPOS-to-running mode transition option: rapid (R option), qualified (Q option), or memory-based (M option).

With the rapid option, once the magnetic-signal movement exceeds a fixed startup hysteresis value, the device immediately transitions to calibration mode and threshold-based switching. The R option provides the fastest transition to running-mode thresholds; but, in certain startup scenarios, this can result in a large difference in output accuracy between the first edge and the same running-mode edge.

With the qualified option, the device remains in TPOS mode for at least two edges before transitioning to running mode. The Q option provides the lowest worst-case output accuracy difference between the first edge and subsequent running-mode edges.

With the memory-based option, the device remains in TPOS mode for n teeth, which is programmable between 1 and 12,

to guarantee it has correctly captured enough peaks to fill the running-mode threshold memory. The M option provides the slowest transition to running-mode thresholds but provides the best runout capability.

SELF-CALIBRATING TPOS FEATURE

The self-calibrating TPOS feature of the ATS16351 enables the sensor IC to identify the installation air gap inside of the engine and automatically reprogram into memory the optimal threshold for power-on accuracy. The first time the device is powered on, it uses the t_{PO} value written in EEPROM at the factory. After the first cycles, if there is a significant difference between the factory t_{PO} value and the optimal t_{PO} value (middle point of the signal), the device self-writes the optimal t_{PO} value in EEPROM for all future use.

CALIBRATION MODE

In calibration mode, the ATS16351 uses threshold-based switching with continuous updates. This ensures that all teeth and valleys are captured correctly but provides slightly reduced accuracy relative to running mode. The device stays in calibration mode long enough to guarantee it has correctly captured enough peaks to fill the running-mode threshold memory. After calibration mode is complete, the device transitions to running mode.

RUNNING MODE

In running mode, the ATS16351 uses threshold-based switching with internal hysteresis as described in the Threshold Update section and the Switch Points and Hysteresis section. The threshold update is intended to optimize output switching accuracy when used with common camshaft targets, including cases with runout and narrow target valleys.

WATCHDOG

The ATS16351 has a peak detector that continuously tracks the magnetic signal. If a sudden large signal change causes the sensor output to stop switching but the peak detector continues to detect valid signal movement, the watchdog becomes triggered. When it is triggered, the sensor performs a self-reset and returns to initial startup hysteresis mode to regain output switching.

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

Diagnostic Capability

When diagnostic functionality is activated, the device continuously monitors itself—from the signal chain to the output levels—and reports a fault by driving the output to the fault state ($V_{FAULT(LOW)}$) for a period of time defined by $t_{W(FAULT)}$. After this period of time, the device attempts to recover by selfreset. In there is a permanent detectable failure, the sequence is repeated indefinitely (see Figure 7). For more information, see the ATS16351 Safety Manual.

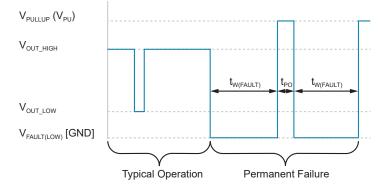


Figure 7: ASIL Output Behavior

Target Profile Diagnostics

Target profile diagnostics allows customers to characterize a gear target during manufacturing and to detect any subtle gear tooth anomalies that may exist before an engine is installed into a vehicle, thus saving cost. It has the potential to reduce warranty returns, thus increasing customer satisfaction.

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

POWER DERATING

The device must operate at less than the rated maximum junction temperature of the device, $T_{J(max)}$. At certain peak operating conditions, reliable operation may require power-supply voltage derating and/ or improved heat dissipation to ensure proper operation. This section presents a procedure for correlating factors that affect the operating junction temperature T_J . (Thermal data is also available on the Allegro MicroSystems website.)

The package thermal resistance, $R_{\theta JA}$, is a figure of merit summarizing the ability of the package to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the effective thermal conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, $R_{\theta JC}$, is a relatively small component of $R_{\theta JA}$. Ambient air temperature, T_A , and air motion are significant external factors, damped by overmolding.

The effect of varying power levels (power dissipation, P_D) can be estimated. The following formulas represent the fundamental relationships used to estimate T_J , at P_D :

Equation 1:	$P_D = V_{IN} \times I_{IN}$
Equation 2:	$\varDelta T = P_D \times R_{\theta JA}$
Equation 3:	$T_J = T_A + \varDelta T$

For example, given common conditions such as: T_A = 25°C, V_{CC} = 12 V, I_{CC} = 7 mA, and $R_{\theta JA}$ = 147°C/W, then:

$$P_D = V_{CC} \times I_{CC} = 12 \ V \times 7 \ mA = 84 \ mW$$
$$\Delta T = P_D \times R_{0JA} = 84 \ mW \times 147^{\circ} C/W = 12.3^{\circ} C$$
$$T_I = T_4 + \Delta T = 25^{\circ} C + 12.3^{\circ} C = 37.3^{\circ} C$$

A worst-case estimate, $P_{D(max)}$, represents the maximum allowable power level ($V_{CC(max)}$, $I_{CC(max)}$), without exceeding $T_{J(max)}$, at a selected $R_{\theta JA}$ and T_A .

Example:

Reliability for V_{CC} at $T_A=160$ °C, estimated values based on package SM, using single-layer PCB.

Observe the worst-case ratings for the device, specifically:

 $R_{\theta JA} = 147^{\circ}C/W$, $T_{J(max)} = 175^{\circ}C$, $V_{CC(absmax)} = 24$ V, and $I_{CC} = 10$ mA.

Calculate the maximum allowable power level, $P_{D(max)}$. First, solve Equation 3 for $\Delta T_{(max)}$, the specified $T_{J(max)}$, and T_A :

$$\Delta T_{(max)} = T_{J(max)} - T_A = 175^{\circ}C - 160^{\circ}C = 15^{\circ}C$$

This provides the allowable increase to T_J resulting from internal power dissipation. Then, solve Equation 2 for $P_{D(max)}$:

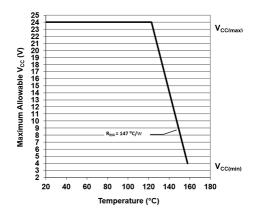
$$P_{D(max)} = \Delta T_{(max)} \div R_{\theta JA} = 15^{\circ}C \div 147^{\circ}C/W = 102 \, mW$$

Finally, solve Equation 1 with respect to supply voltage:

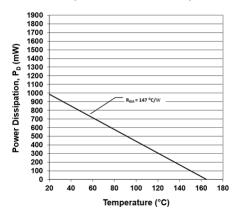
$$V_{CC(est)} = P_{D(max)} \div I_{CC} = 102 \text{ mW} \div 10 \text{ mA} = 10.2 \text{ V}$$

The result indicates that, at T_A , the application and device can dissipate adequate amounts of heat at voltages $\leq V_{CC(est)}$.

Compare $V_{CC(est)}$ to $V_{CC(max)}$:

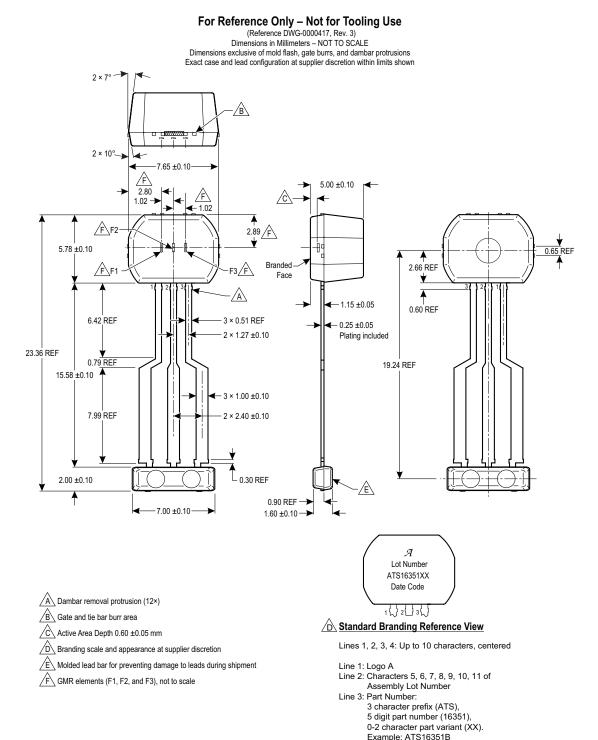

- If V_{CC(est)} ≤ V_{CC(max)}, reliable operation between V_{CC(est)} and V_{CC(max)} requires enhanced R_{θJA}.
- If $V_{CC(est)} \ge V_{CC(max)}$, operation between $V_{CC(est)}$ and $V_{CC(max)}$ is reliable under these conditions.

THERMAL CHARACTERISTICS: May require derating at maximum conditions


Characteristic	Symbol	Test Conditions [1]	Value	Unit
Package Thermal Resistance	$R_{ extsf{ heta}JA}$	1-layer PCB with copper limited to solder pads	147	°C/W

^[1]Additional thermal information available on the Allegro website.

Power Derating Curve


Power Dissipation versus Ambient Temperature

Self-Calibrating TPOS GMR Camshaft Speed Sensor IC

Package SM, 3-Pin SIP

Line 4: 4 digit Date Code

Revision History

Number	Date	Description
-	March 2, 2022	Initial release
1	March 15, 2022	Updated part numbering schema (page 3)
2	March 9, 2023	Change to available part number (pages 2 and 3)
3	November 11, 2024	Added ASIL status and related data, and made minor editorial changes throughout, including minimization of capitalization, standardization of footnote numbering, inclusion of definitions for acronyms, elimination of the future tense ("will"), and inclusion of hyperlinks for cross referenced sections.

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

