The ATS696PSM is a combined Hall-effect sensor IC and EMC protection circuit that provides a user-friendly PCB-less solution for true zero-speed digital crankshaft sensing. The ATS696 provides speed and direction information through a variable pulse-width output protocol. The open-drain output provides a voltage output such that the time between falling electrical edges (period) corresponds to the speed, and the time between a falling edge and corresponding rising edge (pulse width) indicates direction. The device can be optimized via programmable options for crankshaft sensing applications and can be used to sense a ferromagnetic target.

Three Hall plates are used to create three differential channels. These channels, along with advanced direction detection algorithms, are used to produce a highly accurate output across the full range of air gap and operating temperatures. The combination of high accuracy with direction information provides absolute position on most crank targets in cases of engine backlash, making it ideal for stop/start engine designs.

The ATS696 is provided in a 3-pin SIP package (SM) that is lead (Pb) free, with 100% tin leadframe plating.
PROGRAMMABLE OPTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Available Selections*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Output Protocol</td>
<td>Pulse Width Option (Output is the variable pulse width protocol used to convey speed of rotation and relative direction)</td>
</tr>
<tr>
<td>Forward Pulse, t_{WFWD}, Rotation Direction</td>
<td>Target movement from pin 1 to pin 3 (F Option)</td>
</tr>
<tr>
<td></td>
<td>Target movement from pin 3 to pin 1 (R Option)</td>
</tr>
<tr>
<td>Output Pulse Location</td>
<td>Pulse opposite tooth with ferromagnetic target and back-biasing magnet south pole to ATS696 rear face (N Option)</td>
</tr>
<tr>
<td></td>
<td>Pulse opposite valley with ferromagnetic target and back-biasing magnet south pole to ATS696 rear face (S Option)</td>
</tr>
<tr>
<td></td>
<td>Pulse opposite both tooth and valley with ferromagnetic target and back-biasing magnet (D Option)</td>
</tr>
<tr>
<td>Typical Forward Pulse Width, t_{WFWD}</td>
<td>22 μs (F22 Option)</td>
</tr>
<tr>
<td></td>
<td>45 μs (F45 Option)</td>
</tr>
<tr>
<td>Typical Reverse Pulse Width, t_{WREV}</td>
<td>45 μs (R45 Option)</td>
</tr>
<tr>
<td></td>
<td>90 μs (R90 Option)</td>
</tr>
<tr>
<td></td>
<td>135 μs (R135 Option)</td>
</tr>
<tr>
<td></td>
<td>180 μs (R180 Option)</td>
</tr>
<tr>
<td>Typical Fall Time (with V_{PU} = 5 V and R_{PU} = 1 kΩ)</td>
<td>1 μs (Fast Option)</td>
</tr>
<tr>
<td></td>
<td>3 μs (Medium Option)</td>
</tr>
<tr>
<td></td>
<td>6 μs (Slow Option)</td>
</tr>
<tr>
<td>Typical Startup Hysteresis</td>
<td>12.5 G</td>
</tr>
<tr>
<td></td>
<td>25 G</td>
</tr>
<tr>
<td></td>
<td>50 G</td>
</tr>
<tr>
<td></td>
<td>100 G</td>
</tr>
<tr>
<td>Vibration Recovery</td>
<td>Enabled for 63 consecutive forward pulses (S Option)</td>
</tr>
<tr>
<td></td>
<td>Enabled for 255 consecutive forward pulses (T Option)</td>
</tr>
<tr>
<td></td>
<td>Always On (N Option)</td>
</tr>
<tr>
<td></td>
<td>Always Off (F Option)</td>
</tr>
<tr>
<td>Target Type</td>
<td>Standard (Speed Channel Switchpoint Location: 50% Required Direction Channel Separation at Switchpoint: 35%)</td>
</tr>
<tr>
<td></td>
<td>Wide Tooth (Speed Channel Switchpoint Location: 68.75% Required Direction Channel Separation at Switchpoint: 25%)</td>
</tr>
<tr>
<td>Target Profiling Diagnostics</td>
<td>Diagnostics enabled (D Option)</td>
</tr>
<tr>
<td></td>
<td>Diagnostics not available (NA)</td>
</tr>
</tbody>
</table>

*Not all combinations are available. Contact Allegro sales for pricing and availability of custom programming options.

SELECTION GUIDE

<table>
<thead>
<tr>
<th>Selected Programmable Option</th>
<th>Sensor Output Protocol</th>
<th>Rotation Direction</th>
<th>Output Pulse Location</th>
<th>Typical Forward Pulse Width</th>
<th>Typical Reverse Pulse Width</th>
<th>Typical Fall Time (with V_{PU} = 5 V and R_{PU} = 1 kΩ)</th>
<th>Typical Startup Hysteresis</th>
<th>Target Type</th>
<th>Vibration Recovery</th>
<th>Target Profiling Diagnostics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Option</td>
<td>Pulse Width Option</td>
<td>R</td>
<td>N</td>
<td>F45</td>
<td>R90</td>
<td>Medium</td>
<td>25 G</td>
<td>Standard</td>
<td>S</td>
<td>NA</td>
</tr>
</tbody>
</table>
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Notes</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>Refer to Power Derating Section</td>
<td>27</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Supply Voltage</td>
<td>V_{RCC}</td>
<td></td>
<td>−18</td>
<td>V</td>
</tr>
<tr>
<td>Reverse Supply Current</td>
<td>I_{RCC}</td>
<td></td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Output Voltage</td>
<td>V_{ROUT}</td>
<td>$R_{PU} \geq 1 , \text{k} \Omega$</td>
<td>−0.5</td>
<td>V</td>
</tr>
<tr>
<td>Output Sink Current</td>
<td>$I_{OUTSINK}$</td>
<td>Internal current limiting</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Operating Ambient Temperature</td>
<td>T_A</td>
<td>Range P</td>
<td>−40 to 160</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>$T_{J(max)}$</td>
<td></td>
<td>175</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td></td>
<td>−65 to 170</td>
<td>°C</td>
</tr>
</tbody>
</table>

INTERNAL DISCRETE COMPONENT RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristic</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{SUPPLY}</td>
<td>Nominal Capacitance</td>
<td>220000</td>
<td>pF</td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>Nominal Capacitance</td>
<td>2200</td>
<td>pF</td>
</tr>
<tr>
<td>R_{SUPPLY}</td>
<td>Nominal Resistance</td>
<td>33</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>Nominal Resistance</td>
<td>20</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Figure 2: Minimum Application Circuit

Pinout Diagram

Terminal List

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>OUT</td>
<td>Device output</td>
</tr>
</tbody>
</table>
Operating Characteristics: T_A and V_{CC} within specification, unless otherwise noted

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
</table>

Electrical Characteristics

- **Supply Voltage** V_{CC}
 - Operating, $T_J < T_{J(max)}$
 - Min. 4.5
 - Typ. –
 - Max. 24
 - Unit V
- **Supply Current** I_{CC}
 - Min. –
 - Typ. 13
 - Max. 15
 - Unit mA
- **Supply Zener Clamp Voltage** $V_{Zsupply}$
 - $I_{CC} = I_{CC(max)} + 3\ mA$
 - Min. 27
 - Typ. –
 - Max. –
 - Unit V
- **Reverse Supply Zener Clamp Voltage** $V_{RZsupply}$
 - $I_{CC} = -3\ mA$
 - Min. –
 - Typ. –
 - Max. –
 - Unit V

Power-On Characteristics

- **Power-On State** POS
 - Off (high voltage)
 - Min. –
 - Typ. –
 - Max. –
 - Unit –
- **Power-On Time** t_{PO}
 - $f_{OP} < 100\ Hz$, $V_{CC} > V_{CC(MIN)}$
 - Min. –
 - Typ. –
 - Max. 1
 - Unit ms

Sleep Mode Characteristics

- **Reduced Current Operation Threshold** V_{SLEEP}
 - Falling voltage threshold to enable reduced current operation mode
 - Min. –
 - Typ. 3.9
 - Max. –
 - Unit V
- **Reduced Current Consumption** I_{RED}
 - Current draw while in sleep mode
 - Min. –
 - Typ. 3
 - Max. –
 - Unit mA
- **Normal Current Operation Threshold** V_{WAKE}
 - Rising voltage threshold to disable reduced current operation mode
 - Min. –
 - Typ. 4.3
 - Max. –
 - Unit V
- **Reset Threshold** V_{RST}
 - Falling voltage threshold to cause the part to reset
 - Min. –
 - Typ. 3.5
 - Max. –
 - Unit V
- **Wake-Up Time** t_{WAKE}
 - Min. 100
 - Typ. –
 - Max. –
 - Unit µs

Output Stage

- **Output On Voltage** $V_{OUT(SAT)}$
 - Output = on state, $I_{SINK} = 5\ mA$
 - Min. –
 - Typ. –
 - Max. 300
 - Unit mV
 - Output = on state, $I_{SINK} = 20\ mA$
 - Min. –
 - Typ. –
 - Max. 950
 - Unit mV
- **Output Off Voltage** $V_{OUT(OFF)}$
 - Continuous
 - Min. –
 - Typ. –
 - Max. 24
 - Unit V
- **Output Zener Clamp Voltage** $V_{Zoutput}$
 - $I_{OUT} = 3\ mA$
 - Min. 27
 - Typ. –
 - Max. –
 - Unit V
- **Output Current Limit** $I_{OUT(ON)}$
 - $V_{OUT} = 12\ V$, $T_J < T_{J(max)}$
 - Min. 30
 - Typ. 60
 - Max. 80
 - Unit mA
- **Output On Current** $I_{OUT(ON)}$
 - Min. 0
 - Typ. –
 - Max. 25
 - Unit mA
- **Output Leakage Current** $I_{OUT(OFF)}$
 - $V_{OUT} = 18\ V$, Output = off state ($V_{OUT} = High$)
 - Min. –
 - Typ. –
 - Max. 10
 - Unit µA

Pulse Width (t_W) [2]

- **Pulse Width ($t_{W(FWD)}$)**
 - Forward running mode; measured at 50%; $R_{PU} = 1\ kΩ$, $V_{PU} = 5\ V$
 - Option F45 38.3
 - Option F22 19.3
 - Option R90 76.5
 - Option R135 114.8
 - Option R180 153
 - Option R45 38.3
 - Fast 0.37
 - Medium 1.6
 - Slow 3.09
 - Unit µs
- **Pulse Width Ratio** $t_{W(REV)} / t_{W(FWD)}$
 - $V_{PU} = 5\ V$, $R_{PU} = 1\ kΩ$; measured at 50%
 - Min. 1.7
 - Typ. 2.0
 - Max. 2.4
 - Unit –

Minimum Separation Between Consecutive Output Pulses

- **t_{OUTsep}**
 - Includes separation between pulses during a direction change
 - Option F45 30.6
 - Option F22 15.3
 - Option R45 38.3
 - Fast 0.37
 - Medium 1.6
 - Slow 3.09
 - Unit µs

Output Rise Time

- **t_{R}**
 - 10%-90%, $R_{PU} = 1\ kΩ$
 - Fast Option 0.37
 - Medium Option 1.6
 - Slow Option 3.09
 - Unit ms

Output Fall Time

- **t_{F}**
 - Measured 90% to 10% of V_{OUT}; $V_{PU} = 5\ V$, $R_{PU} = 1\ kΩ$
 - Fast Option 0.70
 - Medium Option 3
 - Slow Option 5.80
 - Unit ms

Output Delay Time [4]

- **t_{D}**
 - 1 kHz sinusoidal input signal (default fall time option)
 - Min. 0
 - Typ. –
 - Max. 20
 - Unit µs

[1] Wake-Up Time is illustrated in Figure 11.
[2] Pulse widths measured at 50% threshold on both rising and falling edges.
[3] This is the pulse width ratio for the default pulse width options of $t_{W(FWD)} = 45\ µs$ and $t_{W(REV)} = 90\ µs$.
[4] Time between magnetic signal switchpoint crossing and electrical output signal reaching 90% of $V_{OUT(High)}$.
OPERATING CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Note</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switchpoint</td>
<td>$V_{\text{PROC(ST)}}$</td>
<td>Speed Channel, Standard target programmable option; see Figure 5</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%$V_{\text{pk-pk}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed Channel, Wide tooth target programmable option; see Figure 5</td>
<td>63.75</td>
<td>68.75</td>
<td>73.75</td>
<td>%$V_{\text{pk-pk}}$</td>
</tr>
<tr>
<td>Internal Hysteresis</td>
<td>$V_{\text{PROC(hys)}}$</td>
<td>Speed Channel, one-sided; see Figure 5</td>
<td>–</td>
<td>12.5</td>
<td>–</td>
<td>%$V_{\text{pk-pk}}$</td>
</tr>
<tr>
<td>Relative Repeatability</td>
<td>e_{rgE}</td>
<td>Sinusoidal signal with 6-degree period; $f_{\text{IN}} = 1000 \text{ Hz}$ at 100 $G_{\text{pk-pk}}$; 3σ; (Standard Target Type Option)</td>
<td>–</td>
<td>–</td>
<td>0.025</td>
<td>degrees</td>
</tr>
<tr>
<td>Input LPF Frequency</td>
<td>BW</td>
<td>Multi-pole, –3 dB point</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>$f_{\text{IN(FWD)}}$</td>
<td>Correct Speed Information (Forward Rotation) (Option 22 or 45 μs Forward Pulse)</td>
<td>0</td>
<td>–</td>
<td>10</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>$f_{\text{IN(REV)}}$</td>
<td>Correct Speed Information (Reverse Rotation)</td>
<td>Option R45</td>
<td>0</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct Speed Information (Reverse Rotation)</td>
<td>Option R90</td>
<td>0</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct Speed Information (Reverse Rotation)</td>
<td>Option R130</td>
<td>0</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct Speed Information (Reverse Rotation)</td>
<td>Option R180</td>
<td>0</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Absolute Phase Error During Calibration</td>
<td></td>
<td>Forward Rotation</td>
<td>$-0.25 \times \frac{T_{\text{TARGET}}}{5}$</td>
<td>$0.25 \times \frac{T_{\text{TARGET}}}{5}$</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse Rotation</td>
<td>$-0.5 \times \frac{T_{\text{TARGET}}}{4}$</td>
<td>$0.5 \times \frac{T_{\text{TARGET}}}{4}$</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Chopper Frequency</td>
<td>f_{C}</td>
<td>Timer interval to initiate Stop Mode; no sensed magnetic edges</td>
<td>–</td>
<td>250</td>
<td>–</td>
<td>kHz</td>
</tr>
<tr>
<td>Stop Mode Timer Period</td>
<td>t_{SM}</td>
<td>Timer interval to initiate Stop Mode; no sensed magnetic edges</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>s</td>
</tr>
<tr>
<td>Time to First Output Edge</td>
<td>$t_{\text{OUT(init)}}$</td>
<td>After t_{PO} elapses, $f_{\text{IN}} < 600 \text{ rpm}$</td>
<td>–</td>
<td>T_{TARGET}</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Missed or Extra Output Pulses in Running Mode</td>
<td>e_{errOUT}</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>output pulse</td>
</tr>
<tr>
<td>Direction Change Recognition</td>
<td>N_{CD}</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>–</td>
<td>switching feature</td>
</tr>
<tr>
<td>Mechanical Shift of Switchpoint</td>
<td>d_{ST}</td>
<td>Distance from target feature center to IC center when V_{PROCST} occurs</td>
<td>–</td>
<td>0</td>
<td>–</td>
<td>mm</td>
</tr>
<tr>
<td>Runout</td>
<td>$B_{\text{SEO(min)}}/B_{\text{SEO(max)}}$</td>
<td>does not include Signature Region</td>
<td>0.50</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

[5] See Figure 4 for the definition of T_{TARGET}.

Allegro MicroSystems, LLC
955 Perimeter Road
Manchester, NH 03103-3353 U.S.A.
www.allegromicro.com
Position Sensor IC with Speed and Direction Output

ATS696PSM

OPERATING CHARACTERISTICS: T_A and V_{CC} within specification, unless otherwise noted

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbol</th>
<th>Note</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE CHARACTERISTICS (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle to Cycle Variation</td>
<td>$B_{SEQ(n)}$ to $B_{SEQ(n+1)}$, does not include signature region; see Figure 6</td>
<td></td>
<td>0.9</td>
<td>–</td>
<td>1.1</td>
<td>–</td>
</tr>
<tr>
<td>Signature Amplification Ratio</td>
<td>$B_{SEQ(sig)}/B_{SEQ}$ of pole pair directly before signature region; see Figure 6</td>
<td></td>
<td>0.8</td>
<td>–</td>
<td>2.0</td>
<td>–</td>
</tr>
<tr>
<td>Vibration Tolerance During Calibration</td>
<td></td>
<td>Periods of single-direction rotation required to provide correct output after start-up vibration is encountered [6]</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>periods (tooth-valley pairs)</td>
</tr>
<tr>
<td>Initial Calibration Interval</td>
<td>CAL_I</td>
<td>$f_N < 600$ rpm; no signature region</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>output pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f_N < 600$ rpm; signature region encountered</td>
<td>–</td>
<td>–</td>
<td>9</td>
<td>output pulse</td>
</tr>
<tr>
<td>First Output Edge</td>
<td></td>
<td>After power on, $f_N < 600$ rpm</td>
<td>–</td>
<td>–</td>
<td>T_{TARGET}</td>
<td>–</td>
</tr>
</tbody>
</table>

MAGNETIC CHARACTERISTICS

| Operating Magnetic Input Range | B_{DIFF} | Allowable differential magnetic input range | –700 | – | 700 | G |
| Back-Biasing Magnetic Field | B_{COMMON} | For ferromagnetic targets | –2500 | – | 2500 | G |

TARGET CHARACTERISTICS

Required Direction Channel Separation	B_{CHSEP}	Measured between the two direction channels; Measurement is made on normalized (0 to 100%) differential magnetic signals (see Target Definition section)	35 [8]	–	–	%
		Opposite switching feature, measured at BST on Speed Channel, See Figure 10	–	–	–	%
		Opposite non-switching feature	0 [9]	–	–	%

[6] Incorrect Direction Pulses may be given during vibration events.

[7] For startup hysteresis ≥50 G, the minimum differential signal required is equal to the startup hysteresis selection; see Programmable Options Table.

[8] Assumes Standard target option. For Wide tooth programmable option, minimum required Direction channel separation opposite a switching feature is 25%; see Programmable Options Table.

[9] No signal crossover, $0.25 \times B_{SEQ(MAX)} < B_{IN} < 0.75 \times B_{SEQ(MAX)}$.
Figure 3: Definition of Output Fall Time and Delay Time

Figure 5: Establishment of Thresholds, Using Internal Hysteresis (Speed Channel)

Figure 4: Definition of T_{TARGET}

Figure 6: Differential Signature Amplification and Sequential Signal Variation

- V_{PROC} = the processed analog signal of the sinusoidal magnetic input (per channel)
- T_{TARGET} = period between successive sensed target magnetic edges of the same polarity (for a ferromagnetic target, both rising or both falling mechanical edges)
Sensing Technology

The sensor IC contains three Hall elements used in three differential pairs to provide an electrical output signal containing information regarding target edge position and direction of rotation.

Target Profiling

After proper power is applied to the sensor IC, it is capable of providing digital information that is representative of the mechanical or magnetic features of a rotating target. The waveform diagrams in Figure 7 present the automatic translation of the target profiles, from their induced magnetic profiles to the digital output signal of the sensor IC. Three differential magnetic profiles are used to determine the location of the switching feature as well as the direction of rotation. While the location of the switching feature is determined from the differential magnetic profile (referred to as the speed channel), the direction of rotation is determined by the relative amplitude comparison of two low resolution normalized direction channels.

Direction Detection

The sensor IC compares the relative amplitude values of the two low resolution normalized direction signals at the speed channel switchpoint location to determine which direction the target is rotating. The direction of rotation is then communicated through the output pulse width. While in calibration mode, direction information is not available. As a result of this, forward output pulses ($t_{W(FWD)}$) are always given in calibration, independent of the true target rotation direction.

NOTE: For proper functionality, the output must be programmed such that the signature region is a non-switching feature (see Application Information section).

The sensor IC can be programmed such that the output will provide forward pulses ($t_{W(FWD)}$) when the target rotation is from pin 1 to pin 3 (Option F) or from pin 3 to pin 1 (Option R). This is illustrated in Figure 8, with the arrow on the target indicating direction of rotation.
Pulse Occurrence Location

The output pulse can be programmed to occur at the target mechanical features of either polarity, i.e., at the center of a tooth (Option N) or at the center of a valley (Option S) with a ferromagnetic target.

![Figure 9: Output Pulse Location](image)

Switchpoints

The switchpoints of the ATS696 are established dynamically as a percentage of the amplitude of the internal signal V_{PROC}; see Figure 5. This is accomplished by using two tracking signals to track the peaks of each V_{PROC} channel, and the switching thresholds are established at fixed percentages of the two tracking signals. Due to the switchpoint thresholds being established dynamically as a percentage of the peak-to-peak signal, the effect of a signal shift is minimized. The position of the output switching threshold on the speed channel is programmable to ensure the most accurate and consistent output switching. Additionally, it allows the ATS696 to properly detect direction of rotation when used with targets containing signature regions. A 50% threshold is recommended for standard crank targets, while the other programmable options allow for functionality on targets with different mechanical geometries.

Operating Modes

STARTUP HYSTERESIS

When the part is powered on, the first mode of operation is startup hysteresis mode. While in startup hysteresis, the sensor IC begins to internally detect the magnetic profile of the target. This operating mode is used to ensure the detected magnetic signal amplitude exceeds the minimum gauss threshold for the ATS696 algorithm to function properly. The required magnetic signal amplitude is programmable such that it can be optimized for the application, (see the Programmable Options Table). A forward pulse ($t_{W(FWD)}$) is given if the magnetic signal amplitude meets the minimum requirements and the part powered on over a switching feature.

CALIBRATION MODE

Once it is determined that the magnetic signal amplitude meets the minimum signal requirements, the ATS696 begins its calibration. The calibration period allows the internal signal tracking algorithms to properly acquire the magnetic signals.

While in calibration mode, direction information is not available. As a result of this, forward output pulses ($t_{W(FWD)}$) are always given on speed channel switchpoint crossings, independent of the true target rotation direction. This pulse width is programmable to meet specific application requirements (see Programmable Options table).

RUNNING MODE

After calibration is complete, the target relative rotation direction information is available. This information is communicated through the variable pulse-width protocol. While forward rotation is indicated with pulses of width $t_{W(FWD)}$, reverse rotation is indicated with pulses of width $t_{W(REV)}$. The width of the forward pulse ($t_{W(FWD)}$) and the reverse pulse ($t_{W(FWD)}$) can be programmed for application-specific performance optimization (see Programmable Options table). Additionally, see the Direction Detection section for a description of the target’s relative direction of rotation.

In running mode, signal tracking algorithms are employed, allowing the ATS696 to track signal drift resulting from temperature changes, as well as the tracking of target variations such as pole-to-pole variation and runout, while still maintaining high accuracy output switching.

The ATS696 provides a tolerance to vibration during calibration. If the part satisfies the calibration criteria on target vibration, the part will recover once normal rotation begins. The vibration recovery algorithm allows the part to recover within three periods (tooth-valley pairs). The quantity of consecutive monodirectional pulses that vibration recovery is available for is programmable; see Programmable Options table. For the standard option of 63, once the 63rd consecutive pulse in a single direction is given, vibration recovery can no longer be tripped until the part is reset.
STOP & GO MODE

In certain engine management applications, it is possible for large temperature changes to occur while the target is stationary. These temperature changes can affect the differential magnetic signals. The Stop & Go algorithm compensates for such shifts in the processed signal. Once normal rotation resumes, the part will return to running mode.

APPLICATION INFORMATION

Power Supply Protection
The ATS696 contains an on-chip regulator and can operate across a wide supply voltage range. Figure 2 shows the minimum external circuitry needed for proper operation of the sensor IC. This ease of use reduces design time and incremental assembly costs for most applications. Contact Allegro MicroSystems for information on EMC specification compliance.

Target Design
The ATS696 is designed to provide highly accurate switching at each switching feature detected, including switching at the first switching feature after power-on, as well as at the first switching feature after a reversal in the direction of target rotation. To support this functionality, the target must generate a trio of differential magnetic profiles, such that the two direction channels have discernible leading/lagging characteristics. The direction of rotation is determined by comparing the spatial separation between the differential magnetic profiles of the two direction channels.

SIGNAL DIFFERENTIATION AT SWITCHING FEATURES

The optimal separation between the profiles of the two differential direction signals occurs when the corresponding magnetic profiles are in quadrature; this is illustrated in Figure 10. Quadrature profiles can be achieved when the target pitch of the switching feature is approximately equal to twice the distance between the midpoints of the two direction channels, that is, the distance between the midpoint of Hall elements E1 and E2 and the midpoint of Hall elements E2 and E3. This equates to 2.5 mm.

For the ATS696, a switching feature can either be magnetic north and/or magnetic south of a gear tooth peak/valley depending on the Output Pulse Location. This translates to either a positive or negative slope on the Speed channel magnetic signal, and the output switching occurs at the BST point. The BST point is programmable depending on target type; see Programmable Options Table.

Either differential direction channel can be leading or lagging the other, depending on the relative direction of target rotation. When a switching feature is adjacent to the device, i.e. the Speed channel crosses the BST point, the difference between the differential direction signals must be at least 30% of the peak-to-peak amplitude in the sequential regions, BSEQ. The difference between the differential direction signals is programmable depending on target type; see Programmable Options Table. The sequential region refers to the target areas where the switching features are periodic and of uniform configuration, and therefore generating a consistent magnetic profile; see Figure 6.

NON-SWITCHING FEATURES

When non-switching features are adjacent to the device, the constraints on the differential magnetic signals are less stringent, because no output pulses are generated. However, channel signal separation greater than zero must be maintained so that the leading/lagging relationship of the differential magnetic signals is not reversed.

USE OF SIGNATURE REGIONS

Signature regions are target features that are disproportionately long relative to the sequential features. As a result, they can generate differential signal peaks that differ from the peaks generated by the sequential regions; see Figure 6. The device accommodates these peaks, and switching occurs at relatively the same switchpoint as on the sequential features. The effect of a signature region would be a delay in reaching the next switchpoint.

The extension of the signal period significantly reduces the slope of the magnetic gradient around the midpoint of a signature feature. In fact, for relatively large signature features, the magnetic gradient can become flat, as shown in Figure 6. The flat magnetic signal also makes it difficult to maintain the necessary channel separation required for a switching feature. For these reasons, the device accommodates only signature features that are non-switching features.
Sleep Mode

To combat supply voltage micro-cut, the ATS696 introduces an optional reduced current consumption operating mode: Sleep Mode. If the voltage at pin 1 (VCC) drops out, the part will be supplied with energy stored in the bypass capacitor (C_{SUPPLY}). If the voltage across the bypass capacitor drops below the threshold V_{RED}, the sensor IC will enter sleep mode and the current consumption will be reduced. The current consumption is reduced by disabling internal circuitry, and thus increasing the amount of time the part can be supplied by the energy stored in the bypass capacitor. Additionally, disabling internal circuitry allows the voltage at the sensor IC to remain above the reset voltage (which would cause the part to reset completely as if it were powered on). Figure 11 illustrates this. The supply voltage drops out at t_1, and the part is supplied by the energy stored in the bypass capacitor. Once the part enters sleep mode, the energy draw from the bypass capacitor is reduced. The supply voltage comes back at t_2, and the bypass capacitor charges. The ATS696 will exit sleep mode once the voltage increases above the threshold V_{WAKE}, and normal operation will resume after the t_{WAKE} elapses.

Figure 12 illustrates the ATS696 performance while the supply voltage dropout occurs at different locations relative to the target’s features. If a switching feature is encountered while in sleep mode, an output pulse will not be given. However, if the part wakes up and determines that a switching feature was encountered while in sleep mode, it will give an output pulse. Thus, for low speed rotation (f_{IN(FWD)} < 5 kHz), the output pulse will be given with an accuracy shift. Additionally, if the ATS696 enters sleep mode during an output pulse, the pulse will complete normally for the desired duration, i.e., it will not be truncated. There is a risk of missing an output pulse at high speed rotation, (f_{IN(FWD)} > 5 kHz). This can happen if the sensor IC enters sleep mode before the center of a non-switching feature, and wakes up after the center of the next non-switching feature.
Figure 10: Channel Separation and Signal Inversion Definitions
Figure 11: Supply Voltage Dropout
Position Sensor IC with Speed and Direction Output

ATS696PSM

Figure 12: Sleep Mode Output Performance
POWER DERATING

The device must be operated below the maximum junction temperature of the device, \(T_{J(\text{max})} \). Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating \(T_J \). (Thermal data is also available on the Allegro MicroSystems website.)

The Package Thermal Resistance, \(R_{\theta JA} \), is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, \(K \), of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, \(R_{\theta JC} \), is a relatively small component of \(R_{\theta JA} \). Ambient air temperature, \(T_A \), and air motion are significant external factors, damped by overmolding.

The effect of varying power levels (Power Dissipation, \(P_D \)), can be estimated. The following formulas represent the fundamental relationships used to estimate \(T_J \), at \(P_D \).

\[
P_D = V_{IN} \times I_{IN} \\
\Delta T = P_D \times R_{\theta JA} \\
T_J = T_A + \Delta T
\]

For example, given common conditions such as: \(T_A = 25°C \), \(V_{CC} = 12 \text{ V} \), \(I_{CC} = 7 \text{ mA} \), and \(R_{\theta JA} = 270°C/W \), then:

\[
P_D = V_{CC} \times I_{CC} = 12 \text{ V} \times 7 \text{ mA} = 84 \text{ mW} \\
\Delta T = P_D \times R_{\theta JA} = 84 \text{ mW} \times 134°C/W = 11.3°C \\
T_J = T_A + \Delta T = 25°C + 11.3°C = 36.3°C
\]

A worst-case estimate, \(P_{D(\text{max})} \), represents the maximum allowable power level \((V_{CC(\text{max})}, I_{CC(\text{max})}) \), without exceeding \(T_J(\text{max}) \) at a selected \(R_{\theta JA} \) and \(T_A \).

Example:

Reliability for \(V_{CC} \) at \(T_A = 150°C \), estimated values based on package SM, using single layer PCB.

Observe the worst-case ratings for the device, specifically: \(R_{\theta JA} = 134°C/W \), \(T_J(\text{max}) = 165°C \), \(V_{CC(\text{absmax})} = 24 \text{ V} \), and \(I_{CC} = 12 \text{ mA} \).

Calculate the maximum allowable power level, \(P_{D(\text{max})} \): First, invert equation 3:

\[
\Delta T(\text{max}) = T_J(\text{max}) - T_A = 165°C - 150°C = 15°C
\]

This provides the allowable increase to \(T_J \) resulting from internal power dissipation. Then, invert equation 2:

\[
P_{D(\text{max})} = \Delta T(\text{max}) \times R_{\theta JA} = 15°C \times 134°C/W = 111.9 \text{ mW}
\]

Finally, invert equation 1 with respect to voltage:

\[
V_{CC(\text{est})} = P_{D(\text{max})} \div I_{CC} = 111.9 \text{ mW} \div 12 \text{ mA} = 9.3 \text{ V}
\]

The result indicates that, at \(T_A \), the application and device can dissipate adequate amounts of heat at voltages \(\leq V_{CC(\text{est})} \).

Compare \(V_{CC(\text{est})} \) to \(V_{CC(\text{max})} \). If \(V_{CC(\text{est})} \leq V_{CC(\text{max})} \), then reliable operation between \(V_{CC(\text{est})} \) and \(V_{CC(\text{max})} \) requires enhanced \(R_{\theta JA} \). If \(V_{CC(\text{est})} \geq V_{CC(\text{max})} \), then operation between \(V_{CC(\text{est})} \) and \(V_{CC(\text{max})} \) is reliable under these conditions.

THERMAL CHARACTERISTICS: May require derating at maximum conditions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Test Conditions*</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package Thermal Resistance</td>
<td>(R_{\theta JA})</td>
<td>1-layer PCB with copper limited to solder pads</td>
<td>134</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

*Additional thermal information available on the Allegro website.
Position Sensor IC
with Speed and Direction Output

ATS696PSM

Package SM, 3-Pin SIP

For Reference Only – Not for Tooling Use

(Reference DWG-0000417, Rev. 3)
Dimensions in Millimeters – NOT TO SCALE
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions
Exact case and lead configuration at supplier discretion within limits shown

Standard Branding Reference View
Lines 1, 2, 3, 4: Max. 10 characters per line
Line 1: Logo A
Line 2: Characters 5, 6, 7, 8, 9, 10, 11 of Assembly Lot Number
Line 3: Part Number
Line 4: 4-digit Date Code

- Lot Number
- ADCNNNNN
- Date Code

- Dambar removal protrusion (12×)
- Gate and tie bar burr area
- Active Area Depth 0.40 ±0.05 mm
- Branding scale and appearance at supplier discretion
- Molded lead bar for preventing damage to leads during shipment
- Hall elements (E1, E2, and E3), not to scale
ATS696PSM

Position Sensor IC
with Speed and Direction Output

Revision History

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>October 26, 2018</td>
<td>Initial release</td>
</tr>
</tbody>
</table>

Copyright ©2018, Allegro MicroSystems, LLC
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro’s product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com