

FEATURES AND BENEFITS

- Sensitivity with B_{OP} as low as 15 G
- Ultra-low power consumption: \sim 145 nA @ V_{DD} = 1.8 V and f_S = 10 Hz
- Supply voltage range: 1.7 V to 5.5 V
- Sensor polarity: unipolar
- Digital CMOS outputs:
 - □ Push-pull
 - □ Open drain
- Undervoltage lockout (UVLO)
- 3-lead SOT23 package

APPLICATIONS

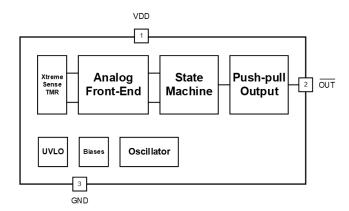
- IoT devices
- · Door or lid closure
- Reed switch replacement
- Tamper-proofing for utility smart meters
- Fluid level sensing/detection
- · Proximity detection
- Motor controllers
- · Gimbals for camera systems in drones/UAVs
- Industrial machinery/robots
- Medical devices

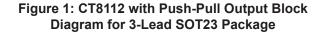
DESCRIPTION

The CT811x series of unipolar tunnel magnetoresistance (TMR) digital latches are designed for consumer and industrial applications. The devices are based on Allegro patented XtremeSenseTM TMR technology with integrated CMOS process to provide a monolithic solution for superior sensing performance. The CT811x digital latches offer stable magnetic operation over the operating temperature range.

This product family has very low power consumption—as low as 145 nA—which is ideal for battery-operated products where minimal current consumption is required. The devices support magnetic fields down to 15 G for applications where there is a large air gap requirement.

The CT811x is available in an industry-standard 3-lead SOT-23 package to support high-volume manufacturing for industrial markets.


PACKAGE:



3-lead SOT-23

Not to scale

FUNCTIONAL BLOCK DIAGRAMS

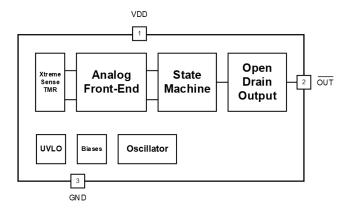


Figure 2: CT8111 with Open Drain Output Block Diagram for 3-Lead SOT23 Package

Integrated Unipolar TMR Digital Latches

Table of Contents

Features and Benefits	Electrical Characteristics	5
Description	Functional Description	17
Applications1	Applications Information	18
Functional Block Diagrams1	XtremeSense TMR Current Sensor Location	19
Selection Guide2	Package Outline Drawing	20
Absolute Maximum Ratings	Tape and Reel Pocket Drawing and Dimensions	21
Recommended Operating Conditions	Package Information	22
Thermal Characteristics	Revision History	23
Pinout Diagram and Terminal List		

SELECTION GUIDE

Part Number	Operating Temp. Range (°C)	Sensor Type	Output	B _{OP} (mT)	B _{RP} (mT)	f _S	Package	Packing
CT8111BK-IS3	-40 to 85	Unipolar	Open Drain	+3.0	+2.0	10 Hz	3-lead SOT23	Tape and Reel
CT8111BK-HS3	-40 to 125	Offipolal	Open Drain	+3.0	+2.0	10 112	3-lead 50123	Tape and Reel
CT8111BH-IS3	-40 to 85	Liningler	Open Drain	+3.0	+2.0	10 kHz	3-lead SOT23	Tana and Daal
CT8111BH-HS3	-40 to 125	Unipolar	Open Drain	+3.0	+2.0	IU KHZ	3-lead 50123	Tape and Reel
CT8111DK-IS3	-40 to 85	Heimalan	On an Dunin	.4.5	.4.0	40 11-	2 14 00722	Tana and Daal
CT8111DK-HS3	-40 to 125	Unipolar	Open Drain	+1.5	+1.0	10 Hz	3-lead SOT23	Tape and Reel
CT8111DT-IS3	-40 to 85	Liningler	Open Drain	+1.5	+1.0	20 Hz	3-lead SOT23	Tana and Daal
CT8111DT-HS3	-40 to 125	Unipolar	Open Drain	+1.5	+1.0	20 112	3-lead 50123	Tape and Reel
CT8112BK-IS3	-40 to 85	Liningler	Push-Pull	+3.0	+2.0	10 Hz	3-lead SOT23	Tana and Daal
CT8112BK-HS3	-40 to 125	Unipolar	Pusn-Pull	+3.0	+2.0	10 112	3-lead 50123	Tape and Reel
CT8112DK-IS3	-40 to 85	Heinelen	Duals Dull	.4.5	.4.0	40.11-	2 14 00722	Tana and Daal
CT8112DK-HS3	-40 to 125	Unipolar	Push-Pull	+1.5	+1.0	10 Hz	3-lead SOT23	Tape and Reel
CT8112DT-IS3	-40 to 85	Liningles	Duch Duil	.15	.10	20.11-	2 load COTO2	Tone and Deal
CT8112DT-HS3	-40 to 125	Unipolar Push-Pull		+1.5	+1.0	20 Hz	3-lead SOT23	Tape and Reel

Integrated Unipolar TMR Digital Latches

ABSOLUTE MAXIMUM RATINGS [1]

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V _{DD}		-0.3 to 6.0	V
Push-Pull Output (Active Low)	V _{OUT_PP}		-0.3 to V _{DD} + 0.3 ^[2]	V
Open Drain Output (Active Low)	V _{OUT_OD}		-0.3 to 6.0	V
Analog Input/Output Pins Maximum Voltage	V _{I/O}		-0.3 to V _{DD} + 0.3 [2]	V
Input and Output Current	$I_{\text{IN}}, I_{\text{OUT}}$		±20.0	mA
Maximum External Magnetic Field	B _{MAX}	T _A = 25°C	±2000	G
Floatroctatic Discharge Protection Level	ESD	Human Body Model (HBM) per JESD22-A114	±4.0 (min)	kV
Electrostatic Discharge Protection Level	ESD	Charged Device Model (CDM) per JESD22-C101	±0.5 (min)	kV
Junction Temperature	TJ		-40 to 150	°C
Storage Temperature	T _{STG}		-65 to 150	°C
Lead Soldering Temperature	T _L	10 seconds	260	°C

^[1] Stresses exceeding the absolute maximum ratings may damage the CT811x and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Allegro does not recommend exceeding or designing to absolute maximum ratings

RECOMMENDED OPERATING CONDITIONS [1]

Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit
Supply Voltage Range	V_{DD}		1.7	3.3	5.5	V
Output Voltage Range	V _{OUT}		0	_	V_{DD}	V
Operating Magnetic Flux	B _{OP}		_	_	300	G
Output Current	I _{OUT}		-	_	±3.0	mA
Bypass Capacitor	C _{BYP}		_	1.0	-	μF
On and the sea Analytic and Tourse and the sea	_	Industrial	-40	25	85	°C
Operating Ambient Temperature	IA	Extended Industrial	-40	25	125	°C

^[1] The Recommended Operating Conditions table defines the conditions for actual operation of the CT811x. Recommended operating conditions are specified to ensure optimal performance to the specifications. Allegro does not recommend exceeding them or designing to absolute maximum ratings.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Test Conditions	Value	Unit
Junction-to-Ambient Thermal Resistance	R _{θJA}	Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu) and 4 oz. of copper (Cu) or more for 65 A. Special attention must be paid not to exceed junction temperature T _{J(MAX)} at a given ambient temperature T _A .	202	°C/W

 $^{^{[2]}}$ The lower of V_{DD} + 0.3 V or 6.0 V.

PINOUT DIAGRAM AND TERMINAL LIST

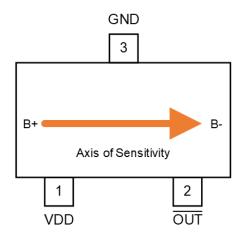


Figure 3: CT811x: 3-Lead SOT23 Package for Digital Output (Top-Down View)

Terminal List

Number	Name	Function
1	VDD	Supply Voltage
2	OUT	Output Signal (Active Low)
3	GND	Ground

Integrated Unipolar TMR Digital Latches

ELECTRICAL CHARACTERISTICS: Valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40° C to 125 $^{\circ}$ C, typical values are V_{DD} = 3.3 V and T_A = 25 $^{\circ}$ C, unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
PUSH-PULL OUTPUT						
Output Voltage High OUT [1]	V _{OH}		0.9 × V _{DD}	-	_	V
Output Voltage Low OUT [1]	V _{OL}		_	_	0.1 × V _{DD}	V
OUT Current [1]	I _{OUT}		_	±2.0	_	mA
OPEN DRAIN OUTPUT						
Output Voltage High [1]	V _{OH}		_	_	5.5	V
Output Voltage Low	V _{OL}	I _{OUT} ≤ 20 mA	0	_	0.5	V
High Output Leakage Current [1]	I _{LEAK}	V _{OH} = 5.5 V, B _{OP} = 0	_	20	_	pA
TIMINGS			,			
Power-On Time [1]	t _{ON}	V _{DD} ≥ 1.7 V	_	50	75	μs
Active Mode Time [1]	t _{ACTIVE}		_	2.6	_	μs
PROTECTION						
Undervoltage Lockout [1]	\ <u>'</u>	Rising V _{DD}	_	1.60	1.64	V
Officer voltage Lockout (1)	V _{UVLO}	Falling V _{DD}	1.44	1.53	_	V
UVLO Hysteresis [1]	V _{UV_HYS}		_	70	-	mV

^[1] Guaranteed by design and characterization; not tested in production.

TYPICAL TIMING CHARACTERISTICS

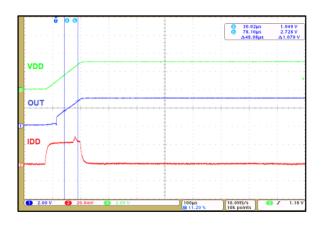


Figure 4: Power-On Time for Push-Pull Output

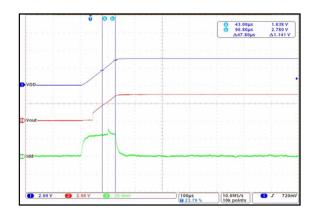


Figure 5: Power-On Time for Open Drain Output

CT8111BK – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
A	I _{DD(AVG)}	t ≥ 10 seconds	_	190	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	_	145	700	nA
Sampling Frequency	f _{S1}		6	10	14	Hz
Idle Mode Time	t _{IDLE1}	f _S = 2 Hz	71	100	167	ms
Operate Point	B _{OP}		23	30	38	G
Release Point	B _{RP}		14	20	27	G
Hysteresis	B _{HYST}		5	10	_	G

CT8111BH – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
	I _{DD(AVG)}	t ≥ 10 seconds	_	45	57	μA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	_	41	47	μA
Sampling Frequency	f _{S1}		6	10	14	kHz
Idle Mode Time	t _{IDLE1}	f _S = 10 Hz	71	100	167	μs
Operate Point	B _{OP}		23	30	38	G
Release Point	B _{RP}		14	20	27	G
Hysteresis	B _{HYST}		5	10	_	G

TYPICAL MAGNETIC CHARACTERISTICS FOR CT8111Bx

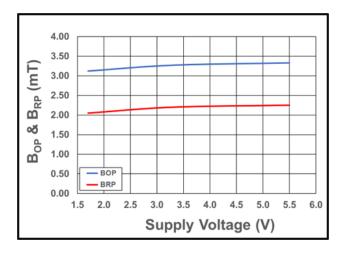


Figure 6: B_{OP} (Blue) and B_{RP} (Red) vs. Supply Voltage at $T_A = 25$ °C

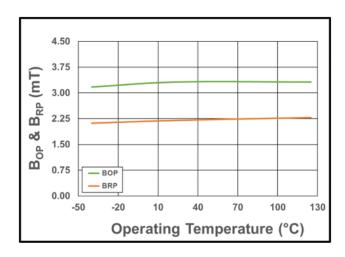
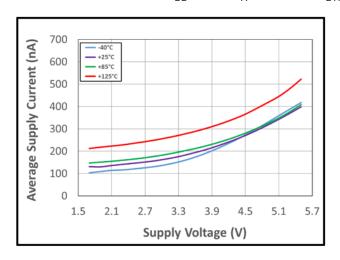



Figure 7: B_{OP} (Green) and B_{RP} (Orange) vs. Temperature at V_{DD} = 3.3 V

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8111BK

700 Average Supply Current (nA) VDD = 2.7 V 600 -VDD = 3.0 V -VDD = 3.3 V 500 -VDD = 3.6 V -VDD = 5.0 V 400 300 200 100 0 -50 -20 70 100 130 160 Temperature (°C)

Figure 8: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 9: Average Supply Current vs. Temperature vs. Supply Voltage

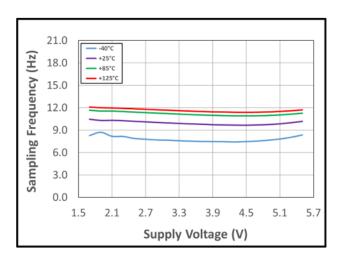
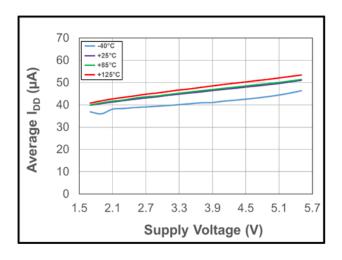



Figure 10: Sampling Frequency vs. Supply Voltage vs. Temperature

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8111BH

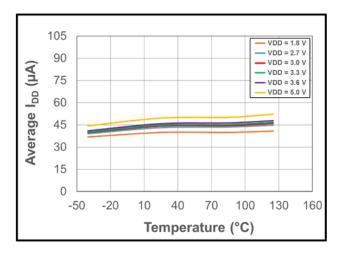


Figure 11: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 12: Average Supply Current vs. Temperature vs. Supply Voltage

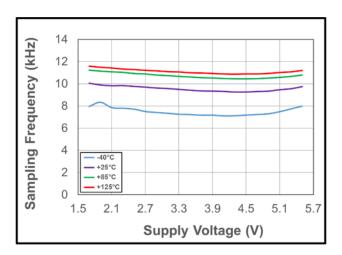


Figure 13: Sampling Frequency vs. Supply Voltage vs. Temperature

CT8111DK – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
A	I _{DD(AVG)}	t ≥ 10 seconds	_	190	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	-	145	700	nA
Sampling Frequency	f _S		6	10	14	Hz
Idle Mode Time	t _{IDLE}	f _S = 10 Hz	71	100	167	ms
Operate Point	B _{OP}		11	15	19	G
Release Point	B _{RP}		6	10	14	G
Hysteresis	B _{HYST}		3	5	_	G

CT8111DT – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for $V_{DD} = 1.7$ to 5.5 V, $C_{BVP} = 1.0 \mu F$, and $T_{\Delta} = -40^{\circ} C$ to 125°C, typical values are $V_{DD} = 3.3 \text{ V}$ and $T_{\Delta} = 25^{\circ} C$

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
	I _{DD(AVG)}	t ≥ 10 seconds	_	220	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	_	175	700	nA
Sampling Frequency	f _S		14	20	26	Hz
Idle Mode Time	t _{IDLE}	f _S = 20 Hz	38	50	71	ms
Operate Point	B _{OP}		11	15	19	G
Release Point	B _{RP}		6	10	14	G
Hysteresis	B _{HYST}		3	5	-	G

TYPICAL MAGNETIC CHARACTERISTICS FOR CT8111Dx

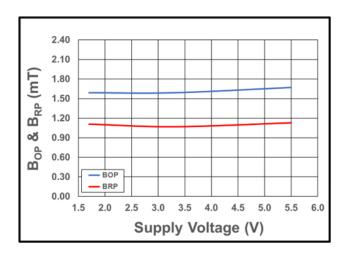


Figure 14: B_{OP} (Blue) and B_{RP} (Red) vs. Supply Voltage at $T_A = 25$ °C

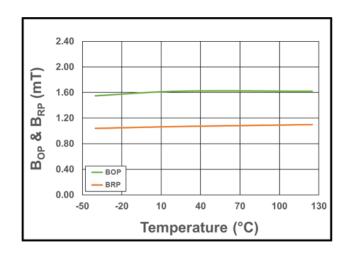
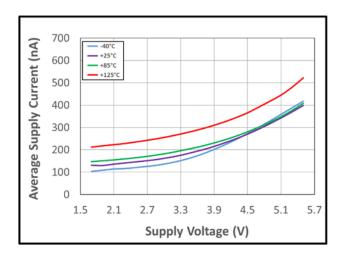



Figure 15: B_{OP} (Green) and B_{RP} (Orange) vs. Temperature at V_{DD} = 3.3 V

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8111DK

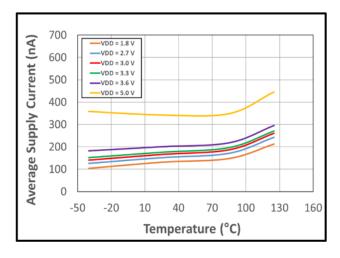


Figure 16: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 17: Average Supply Current vs. Temperature vs. Supply Voltage

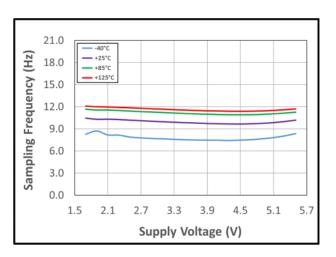
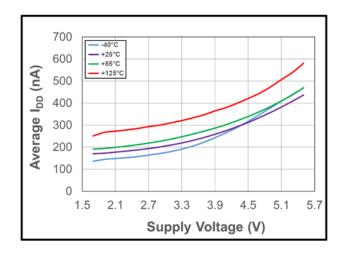



Figure 18: Sampling Frequency vs. Supply Voltage vs. Temperature

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8111DT

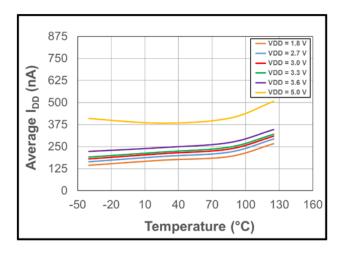


Figure 19: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 20: Average Supply Current vs. Temperature vs. Supply Voltage

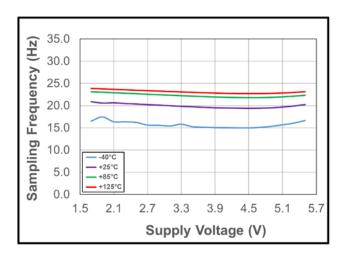


Figure 21: Sampling Frequency vs. Supply Voltage vs. Temperature

CT8112BK – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
A	I _{DD(AVG)}	t ≥ 10 seconds	_	190	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	_	145	700	nA
Sampling Frequency	f _{S1}		6	10	14	Hz
Idle Mode Time	t _{IDLE1}	f _S = 10 Hz	71	100	167	ms
Operate Point	B _{OP}		23	30	38	G
Release Point	B _{RP}		14	20	27	G
Hysteresis	B _{HYST}		5	10	_	G

TYPICAL MAGNETIC CHARACTERISTICS FOR CT8112BK

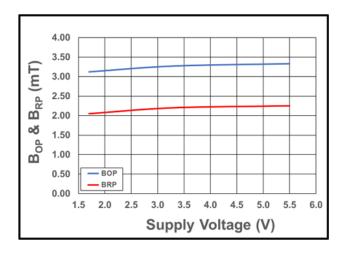


Figure 22: B_{OP} (Blue) and B_{RP} (Red) vs. Supply Voltage at T_A = 25°C

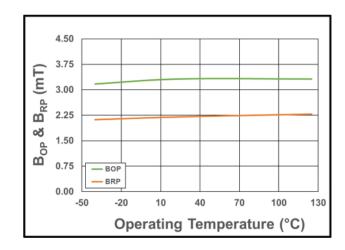
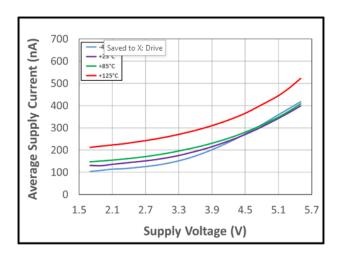



Figure 23: B_{OP} (Green) and B_{RP} (Orange) vs. Temperature at V_{DD} = 3.3 V

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8112BK

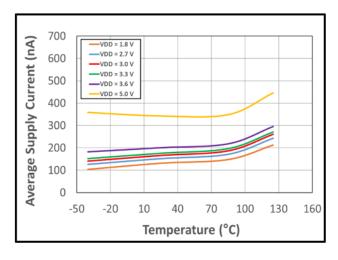


Figure 24: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 25: Average Supply Current vs. Temperature vs. Supply Voltage

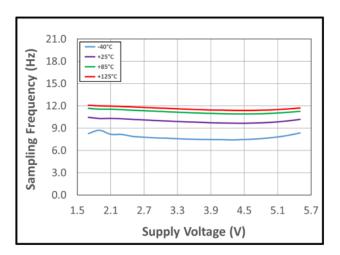


Figure 26: Sampling Frequency vs. Supply Voltage vs. Temperature

CT8112DK – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Account to Committee Committee	I _{DD(AVG)}	t ≥ 10 seconds	_	190	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	_	145	700	nA
Sampling Frequency	f _S		6	10	14	Hz
Idle Mode Time	t _{IDLE}	f _S = 10 Hz	71	100	167	ms
Operate Point	B _{OP}		11	15	19	G
Release Point	B _{RP}		6	10	14	G
Hysteresis	B _{HYST}		3	5	_	G

CT8112DT – ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for V_{DD} = 1.7 to 5.5 V, C_{BYP} = 1.0 μ F, and T_A = -40°C to 125°C, typical values are V_{DD} = 3.3 V and T_A = 25°C

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Average Supply Current	I _{DD(AVG)}	t≥10 seconds	-	220	900	nA
Average Supply Current	I _{DD(AVG)_1.8V}	t ≥ 10 seconds, V _{DD} = 1.8 V	ı	175	700	nA
Sampling Frequency	f _S		14	20	26	Hz
Idle Mode Time	t _{IDLE}	f _S = 20 Hz	38	50	71	ms
Operate Point	B _{OP}		11	15	19	G
Release Point	B _{RP}		6	10	14	G
Hysteresis	B _{HYST}		3	5	-	G

TYPICAL MAGNETIC CHARACTERISTICS FOR CT8112Dx

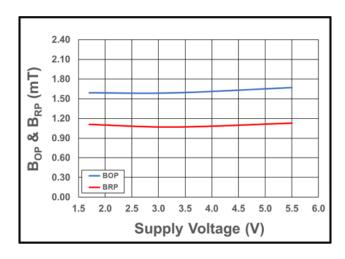


Figure 27: B_{OP} (Blue) and B_{RP} (Red) vs. Supply Voltage at T_A = 25°C

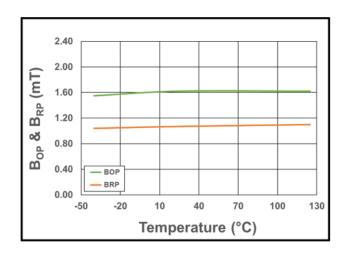
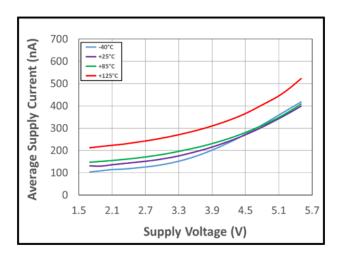



Figure 28: B_{OP} (Green) and B_{RP} (Orange) vs. Temperature at V_{DD} = 3.3 V

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8112DK

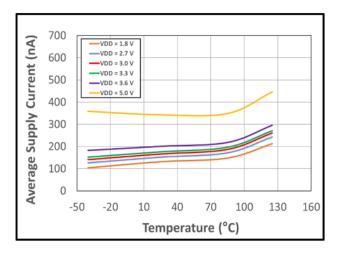


Figure 29: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 30: Average Supply Current vs. Temperature vs. Supply Voltage

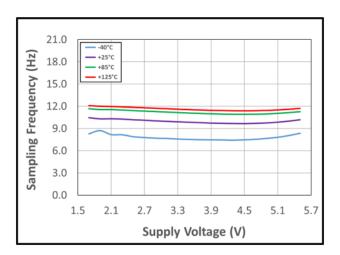
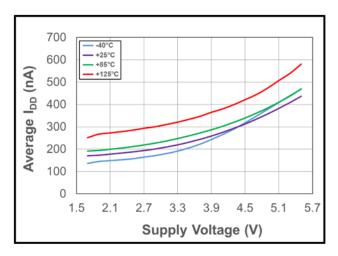



Figure 31: Sampling Frequency vs. Supply Voltage vs. Temperature

TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8112DT

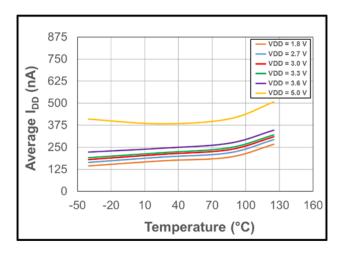


Figure 32: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 33: Average Supply Current vs. Temperature vs. Supply Voltage

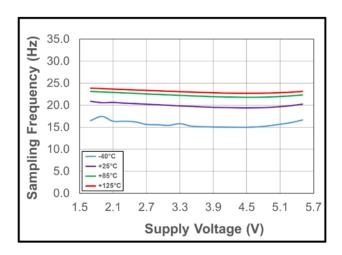


Figure 34: Sampling Frequency vs. Supply Voltage vs. Temperature

FUNCTIONAL DESCRIPTION

Overview

The CT811x is a product family of unipolar TMR magnetic latches that supports a wide operating voltage range of 1.7 to 5.5 V and is capable of providing two digital output configurations: open drain or push-pull. These unipolar TMR digital latches are designed to consume a minimal amount of current which is ideal for battery-operated products. It also supports a wide range of sensitivity levels for various applications.

Undervoltage Lockout (UVLO)

The Undervoltage Lockout protection circuitry of the CT811x is activated when the supply voltage (V_{DD}) falls below 1.53 V. The CT811x remains in a low quiescent state and the \overline{OUT} output is not valid until V_{DD} rises above the UVLO threshold (1.60 V).

Power-On Time (t_{ON})

The Power-On Time (t_{ON}) of 50 μs is the amount of time required by the CT811x to start up, power-on, and acquire the first sample. The chip is fully powered up and operational from the moment the supply voltage passes the rising UVLO point (1.60 V). This time includes the ramp-up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply have reach the minimum V_{DD} .

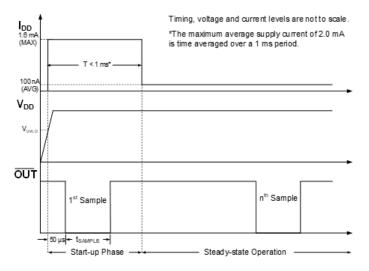


Figure 35: CT811x Power-On Timing Diagram

Unipolar Magnetic Flux

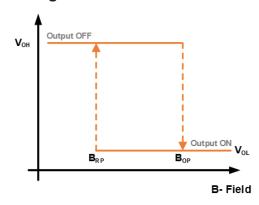


Figure 36: CT811x Output Behavior vs. Magnetic Field

Table 1: CT8111 Open Drain Output Behavior

<u> </u>						
Magnetic Field	Condition	Output				
Positive Field	B > B _{OP}	High-Z (OFF)				
Null or Weak Magnetic Field	B < B _{RP}	High-Z (OFF)				
Negative Field	B > B _{OP}	Low (ON)				

Table 2: CT8112 Push-Pull Output Behavior

	-	
Magnetic Field	Condition	Output
Positive Field	B > B _{OP}	High (OFF)
Null or Weak Magnetic Field	B < B _{RP}	High (OFF)
Negative Field	B > B _{OP}	Low (ON)

APPLICATIONS INFORMATION

A decoupling capacitor, C_{BYP} , between the supply voltage (VDD) and ground (GND) is required to lower the noise going into the CT8111 as well as providing isolation from the other circuits. The decoupling capacitor should be placed close to the TMR digital latch. A typical capacitor value of 1.0 μ F (ceramic) will be sufficient. A pull-up resistor of 47 k Ω connected from \overline{OUT} to the system voltage (V_{SYS}) is required for the CT8111.

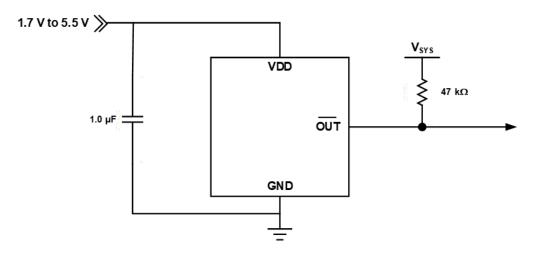


Figure 37: CT8111 Application Block Diagram

Like the CT8111, the CT8112 products require a $1.0 \,\mu\text{F}$ (ceramic) bypass capacitor to be connected between the supply voltage and ground.

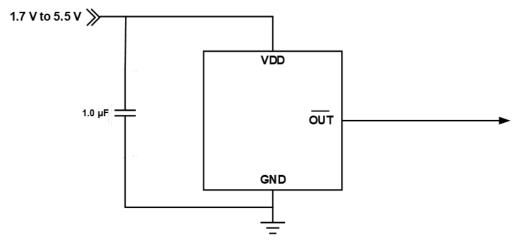


Figure 38: CT8112 Application Block Diagram

XtremeSense TMR Current Sensor Location

The XtremeSense TMR sensor location for the CT811x products are shown in Figure 39. The dimensions shown are typical values.

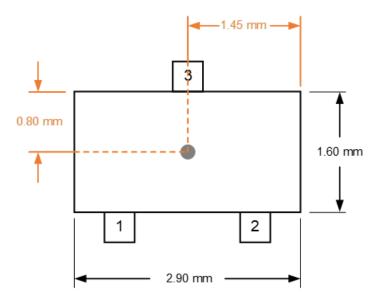


Figure 39: XtremeSense TMR Sensor Location for CT811x products in 3-lead SOT23 Package

PACKAGE OUTLINE DRAWING

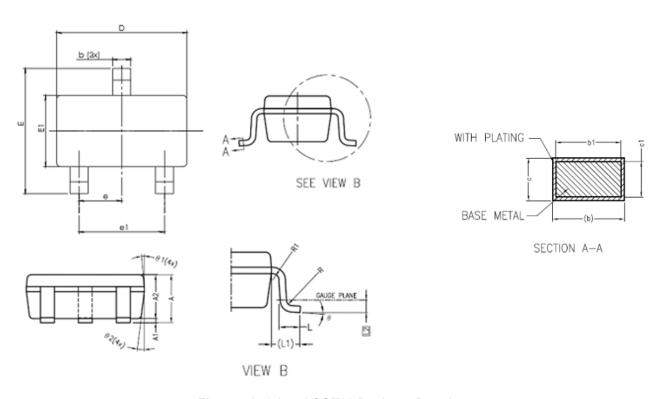


Figure 40: 3-Lead SOT23 Package Drawing

Table 3: CT811x 3-Lead SOT23 Package Dimensions

Symbol	Dimensions in Millimeters (mm)					
Syllibol	Min.	Тур.	Max.			
А	1.05	1.20	1.35			
A1	0.00	0.10	0.15			
A2	1.00	1.10	1.20			
b	0.30	_	0.50			
b1	0.30	0.35	0.45			
С	0.08	_	0.22			
c1	0.08	0.13	0.20			
D	2.80	2.90	3.00			
E	2.60 2.80		3.00			
E1	1.50	1.60	1.70			

Symbol	Dimensions in Millimeters (mm)				
Symbol	Min. Typ.		Max.		
е	0.95 BSC				
e1		1.90 BSC			
L	0.35	0.35 0.43			
L1	0.50 REF				
L2	0.25 BSC				
R	0.10 – –				
R1	0.10 – 0.2		0.25		
θ	0° 4° 8°		8°		
θ1	5° 6° 15°		15°		
θ2	5° 8° 15°				

#.0±0.1 | 0.20±0.05 | 0.20±0.

TAPE AND REEL POCKET DRAWING AND DIMENSIONS

NOTES:

- 1. Material: Conductive Polystyrene.
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance ± 0.20 mm.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket and not pocket hole.
- 6. (S.R. Ω /sq) means surface electric resistivity of the carrier tape.

Figure 41: Tape and Pocket Drawing for 3-lead SOT23 Package

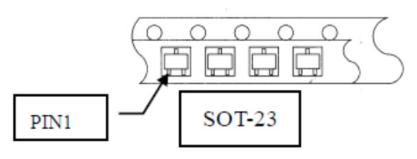


Figure 42: SOT23 Orientation in Tape Pocket

Integrated Unipolar TMR Digital Latches

PACKAGE INFORMATION

Table 4: CT811x Package Information

Part Number	Package Type	# of Leads	Package Quantity	Lead Finish	Eco Plan [1]	MSL Rating [2]	Operating Temperature (°C) [3]	Device Marking ^[4]
CT8111BK-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	EK YWWS
CT8111BK-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	EK YWWS
CT8111BH-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	TBD
CT8111BH-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	TBD
CT8111DK-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	EJ YWWS
CT8111DK-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	EJ YWWS
CT8111DT-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	EL YWWS
CT8111DT-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	EL YWWS
CT8112BK-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	DK YWWS
CT8112BK-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	DK YWWS
CT8112DK-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	DJ YWWS
CT8112DK-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	DJ YWWS
CT8112DT-IS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 85	DL YWWS
CT8112DT-HS3	SOT23	3	3000	Sn	Green & RoHS	1	-40 to 125	DL YWWS

^[1] RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of chlorine (CI), bromine (Br), and antimony trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

^[2] MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

^[3] Package will withstand ambient temperature range of -40°C to 150°C and storage temperature range of -65°C to 150°C.

^[4] Device Marking for SOT23 is defined as XZ YWWS where XZ = part number, Y = year, WW = work week, and S = sequential number.

Integrated Unipolar TMR Digital Latches

Revision History

Number	Date	Description
2	December 11, 2023	Document rebranded and minor editorial updates

Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

