

A31315 Samples Programmer User Manual

A Guide to using the Allegro A31315 Samples Programmer

By K. Robert Bate Allegro MicroSystems

Table of Contents

Welcome	
Version	8
Support	8
Hardware Requirements	8
ASEK Setup	9
Setting up ASEK-20 or ASEK-21	9
Connecting the ASEK-20 to the PC	9
Connecting the ASEK-21 to the PC	
Setting Up Hardware Communication	11
Installing the Software	
Starting the Application	
Status Bar	
Troubleshooting	
Device Setup	
Connecting the Device to the ASEK-20 or ASEK-21	
Connecting the Device to the ASK-20 with the Daughterboard	
Connecting the Device to the ASEK-21	
Setting Up Communications	
Turning the Device On/Off and Reading the Output	
Reading from the device	
Writing to the device	
Device Selection	23
Troubleshooting	23
Troubleshooting when using Manchester Protocol	
Allegro MicroSystems	2

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Menu Bar	
File	25
Load Memory File	25
Save Memory File	25
Dump Memory	25
Exit	25
Edit	25
Undo	25
Cut	25
Сору	25
Paste	25
Select All	25
Select Highlighted	25
Deselect All	25
Deselect Highlighted	
Restore Display Order	
Setup	
Communication Setup	
Device Setup	27
ASEK-20	
ASEK-21 Setup Options	
ASEK-21 Extra Options	
Display as Decimal	
Display as Hexadecimal	
Extended Mode	
	Allegro MicroSystems 3 955 Perimeter Road

955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Short Stroke Trimming Diagnostics	
Scripts	
Run Script	
Help	
View Help	
A31315 Registers Diagram	
Allegro MicroSystems Software Web Site	
Allegro MicroSystems Web Site	
About Allegro A31315 Samples Programmer	
Status Bar	
Status Field	
Communication Status Indicator	
Power	
Voltage Supply Text Box	
Power On Button	
Power Off Button	
Vcc Text Box	
Icc Text Box	
Die Selection	
Output Group	
Read Output Button	
Angle [Degrees] Text Box	
Angle [LSBs] Text Box	
Mag Out A [LSBs] Text Box	
Mag Out B [LSBs] Text Box	
	Allegro MicroSystems 4 955 Perimeter Road 4

955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

	Allegro MicroSystems 955 Perimeter Road	5
Read Selected		45
Table		
Search Name and Description Test Box		44
Show Popup Control		44
Shadow		
Save		43
Load		43
Deselect All		43
Select All		43
Clear Selected		43
Zero Selected		43
Write Selected		43
Read Selected		43
Table		42
Search Name and Description Test Box		
Show Popup Control		
EEPROM		41
Reference		40
Zeroing the Angle		40
Reading from the Device		40
Demo		40
Frequency [Hz] Text Box (SENT/PWM Only)		
Duty Cycle [%] Text Box (SENT/PWM Only)		
Output [Volts] Text Box (Analog Only)		
Temperature [°C] Text Box		

955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Wr	ite Selected45
Zer	o Selected45
Cle	ar Selected45
Sel	ect All45
De	select All
Сор	by to EEPROM45
Volat	ile (Extended Mode Only)46
Sho	w Popup Control46
Sea	arch Name and Description Test Box46
Tak	ole46
Rea	ad Selected47
Wr	ite Selected47
Zer	o Selected47
Cle	ar Selected47
Sel	ect All
De	select All
Short St	roke Trim
Pro	gram Short Stroke
Ref	erence
Lineariza	ation51
Dis	abled Linearization
Fixe	ed Point Linearization
Ref	erence
Fixe	ed Point Binning54
Ref	erence
	Allegro MicroSystems 6
	ALLEGDO 955 Perimeter Road

Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Ň	Variable Point Linearization	56
I	Reference	57
Ň	Variable Point Binning	58
I	Reference	59
Ou	tput	59
,	Analog Output	50
I	PWM Output	52
	SENT Output	53
File F	ormats	55
I	Memory	3 5
,	Angles	55
Scr	ripting the Application	56
	Scripting in C#	56
	Scripting in Visual Basic	70
I	Keywords	74
I	Parameters	77

Welcome

Welcome to the Allegro A31315 Samples Programmer.

The A31315 is a Hall-effect-based magnetic angle and linear position sensor IC for consumer, industrial, and automotive applications.

The A31315 uses planar and vertical Hall plates to measure magnetic fields in two out of three factoryselected dimensions. The user can output the angle between these two axes or output the field of one of the axes in analog or PWM output.

In SENT output, the user can output the angle between the two channels or the field of both channels.

The user can program compensation to correct for any nonlinearity in the system for slide-by-linear sensing and off-axis angle sensing applications.

The A31315 contains advanced Hall plate chopping, removing nearly all the offset in the system, as well as polynomic temperature correction, and when combined with available segmented linearization, provides highest accuracy sensing.

The A31315 also comes with all the features needed for high reliability automotive applications, including undervoltage (UVD), overvoltage (OVD), built-in self-test (BIST) diagnostics, and broken wire detection.

The A31315 is being developed in accordance with ISO 26262:2011 (2018) as a hardware safety element out of context targeting ASIL (B/D) capability for use in automotive safety-related systems when integrated and used in the manner prescribed in the applicable safety manual and datasheet.

Version

2021-01-18 Version 1.2

Support

Support on our website: https://registration.allegromicro.com/

We would like to make this the best A31315 programmer possible. Your input is valuable to us. Please, do not hesitate to contact us with problems or suggestions.

Hardware Requirements

To run this application you need one of the following:

An ASEK-31315-T-KIT which contains:

- ASEK-20-T-KIT
 - ASEK-20 Chassis with main Motherboard inside (85-0540-004)

- USB Communications Cable
- DC Power Supply/Cable with AC Outlet Adapters
- Proto Board (Part # 85-0540-103) (Not required with A31315 communication)
- Ribbon Cable (Part # 85-0540-300)
- ASEK-31315-SUBKIT-T
 - A31315 Grand Daughterboard SMT, Single Die (Part #: TED-0002931)
 - A31315 Grand Daughterboard Socket, Single Die (Part #: TED-0002932)
 - A31315 Grand Daughterboard SMT, Dual Die (Part #: TED-0002934)
 - A31315 Grand Daughterboard Socket, Dual Die (Part #: TED-0002935)
 - A3131x Daughterboard (Part #: TED-0002820)

Or

An ASEK21-T-KIT which contains:

- ASEK-21 Main Board (Part #: 85-0712)
- ASEK-21 Calibration Board (Part #: 85-0712-100)
- ASEK-21 Daughter Board (Part #: 85-0712-103)
- ASEK-21 Cable (Part #: 85-0712-301)
- USB A male to B male 3-foot cable (Part#: 3021001-03)
- ASEK-21 Power Supply (Part #: EMMA050400-P5P-IC)

ASEK Setup

Setting up ASEK-20 or ASEK-21

Connecting the ASEK-20 to the PC

- 1. Connect one end of the USB communications cable to a personal computer
- 2. Connect the other end of the USB communications cable to the "USB" port on the ASEK-20 chassis.
- 3. Connect the ribbon cable to the J2 connector on the daughterboard (TED-0002820)
- 4. Connect the other end of the ribbon cable to the "Device Connection" port on the ASEK-20 chassis
- 5. Connect the DC Power Supply/Cable to the 5V port on the ASEK-20 chassis
- 6. Plug in the DC Power Supply to a 110V/220AC 60/50Hz outlet with the proper adapter

Figure 1: ASEK-20 Setup

Connecting the ASEK-21 to the PC

- 1. Connect one end of the USB communications cable to a personal computer
- 2. Connect the other end of the USB communications cable to the "USB" port on the ASEK-21 chassis.
- 3. Connect the cable from the module to the "Device Connection" port on the ASEK-21 chassis
- 4. Connect the DC Power Supply/Cable to the 5V port on the ASEK-21 chassis
- 5. Plug in the DC Power Supply to a 110V/220AC 60/50Hz outlet with the proper adapter

Figure 2: ASEK-21 Setup

Setting Up Hardware Communication

Installing the Software

Place the zip file where you want the software to be run. Unpack the zip file. A folder called **Allegro A31315 Samples Programmer** should have been created. All the files need to run should be in the folder. The application is the file called **Allegro A31315 Samples Programmer.exe** in this folder.

Starting the Application

1. Double click on the application icon. The main window will appear (see Figure 3).

Figure 3: Main Window

- 2. The application is running but is not connected with the ASEK-20. To connect to the ASEK-20, click on Setup in the menu bar.
- 3. On the Setup pull down menu, select **Communications Setup..**. The Communications Setup dialog box will appear (see Figure 4)

Communication Setup		×
COM Port:	~	Refresh
Status		
Communication: Inactive		
Programmer:		
Version:		
	ОК	Cancel

Figure 4: Communication Setup Dialog Box

- 4. Click the COM port pull down and select the COM port that is the ASEK-20. If you do not know which COM port the ASEK-20 is connected to, then do the following:
 - i. Unplug the USB cable to the ASEK-20.
 - ii. Click **Refresh** at the top right of the communication setup dialog box.
 - iii. Click on the **COM Port** pull down menu and note which ports are in the menu.
 - iv. Plug the USB cable back into the ASEK-20.
 - v. Click **Refresh** again.
 - vi. Click the **COM Port** popup menu again.
 - vii. The new COM port in the menu is the ASEK-20. Click the COM port for the ASEK-20.

Dommunication Setup							
COM Port:	COM4	~	Refresh				
Status							
Communicatio	n: Active						
Programmer:	ASEK-20						
Version:	161.10.3.1						
	(ОК	Cancel				

Figure 5: ASEK-20 Connected

- 5. If the ASEK-20 is turned on, the Status field on the Communication Setup dialog box will change from Inactive to Active, and the firmware version will be displayed (see Figure 5). If the ASEK-20 is not on, do the following:
 - a. Turn the ASEK-20 on.
 - b. Click **Refresh** at the top right of the Communications Setup dialog box. The Communication line in the Status field should change to Active.
- 6. Click **OK**. The com port will be saved and used the next time the application is started.

Status Bar

The Green or Red colored rectangle on the right side of the status bar indicates the status of the communication with the ASEK. If Red, the communication is not active and if green the application is communicating with the ASEK. The COM port that is currently set is overlaid on the colored rectangle. Clicking on the rectangle will open the Communication Setup dialog.

Figure 6: Status Bar with ASEK-20

Troubleshooting

If the driver to communicate to the ASEK-20 or ASEK-21 was not loaded automatically, a copy of the driver is available at <u>http://www.ftdichip.com/Drivers/VCP.htm</u>

Device Setup

Connecting the Device to the ASEK-20 or ASEK-21

Connecting the Device to the ASK-20 with the Daughterboard

- 1. Insert a device into the socket on the TED-0002932 (Single Die) or TED-0002935 (Dual Die).
- 2. Mount the socketed grand-daughterboard onto the daughter board (TED-0002820)

Connecting the Device to the ASEK-21

When connecting the A31315 to the ASEK-21 the following guidelines must be used.

- The VCC_F and VCC_S lines need to be connected. If using the stable or accurate feedback power option, then the lines can be shorted together as close to the connecter as desired, otherwise when using the external feedback option, the VCC_S line needs to come from the module and connect to the VCC_F line there.
- 2. The VOUT_F and VOUT_S lines need to be connected either at the connecter or the module.
- 3. The GND_F and GND_S lines need to be connected either at the connecter or the module.

Figure 7: Connecting 2 Devices to ASEK-21

Setting Up Communications

To set which communication protocol is to be used, click **Device Setup...** from the Setup pull-down menu.

🛑 Device Setup		>	×
Protocol ASEK-20			
Device Package	Single Die	~	
ID Die 1		Global \sim	
ID Die 2		Global \sim	
Device Output	Analog	~	
Communication Enable Method	VCC Communication Enable	~	
Communication Enable Voltage	M	10.300 🜲	
Manchester High Voltage [V]		4.000 🜲	
Manchester Low Voltage [V]		0.300 ≑	
Speed [kb/s]		4 🜩	
Manchester Threshold [V]		1.500 🜩	
Initial Command:			
Auto Detect	Re	store Defaults	
	ОК	Cancel	

Figure 8: Device Setup, Analog Manchester Parameters

- 1. Select between Single Die or Dual Die from the **Device Package** pop-up menu.
- 2. If the ASEK in use is an ASEK-21 and the outputs are ties together then select the die IDs that have been wired into the device, otherwise leave the **Die ID** pop-ups as Global.
- The Auto Detect button in the lower left corner of the Protocol Tab will auto detect which
 programming the device contains and will setup the communication parameters accordingly and
 all of the following steps can be skipped. Warning: Vcc will be raised to the Communication
 Enable Voltage so do not use if this will damage any device connected to Vcc.
- 4. If the device is programmed so the output is Analog
 - a. If VCC is to be raised to initiate communications, then select Vcc Communication Enable from the **Communication Enable Method** pop-up.
 - b. Otherwise select Overdrive. This will have the ASEK force the output of the device to the Manchester Low Voltage to initiate communications.
 - c. If using the ASEK-20 and if the 100nf capacitor is not supplied, make sure the 100nf capacitor is enabled on the ASEK-20 tab.
- 5. If the device is programmed so the output is digital (PWM or SENT) and the output driver is open drain.
 - a. If VCC is to be raised to initiate communications, then select Vcc Communication Enable from the **Communication Enable Method** pop-up.

- b. If the device is programmed so the output is PWM, select Auxiliary Interrupt Pulse (PWM) from the from the Communication Enable Method pop-up and select the PWM output rate that matches the device.
- c. If the device is programmed so the output is SENT, select Auxiliary Interrupt Pulse (SENT) from the from the **Communication Enable Method** pop-up and select the SENT tick time that matches the device.
- d. If a pull-up is not supplied, then on the ASEK-20 or ASEK-21 tab select the pull-up resister option.
- 6. If the device is programmed so the output is digital (PWM or SENT) and the output driver is push-pull.
 - a. If VCC is to be raised to initiate communications, then select Vcc Communication Enable from the **Communication Enable Method** pop-up.
 - b. If the device is programmed so the output is PWM, select Auxiliary Interrupt Pulse (PWM) from the from the Communication Enable Method pop-up and select the PWM output rate that matches the device.
 - c. If the device is programmed so the output is SENT, select Auxiliary Interrupt Pulse (SENT) from the from the **Communication Enable Method** pop-up and select the SENT tick time that matches the device.

d.	A pull-up is not needed so on the ASEK-20 or ASEK-21 tab verify the pull-up
	resister option is not selected.

Device Setup			×	۲	Device Setup			×
Protocol ASEK-20					Protocol ASEK-20			
Device Package	Single Die	```	/		Device Package	Single Die		\sim
ID Die 1		Global	/		ID Die 1		Global	\sim
ID Die 2		Global	·		ID Die 2		Global	\sim
Device Output	Digital, Open Drain	```	/		Device Output	Digital, Push-Pull		\sim
Communication Enable Method	VCC Communication Enable	`	/		Communication Enable Method	VCC Communication Enable		\sim
Communication Enable Voltage	[V]	10.300	-		Communication Enable Voltage [vj	10.30	0
PWM Output Rate [Hz]		125	1		PWM Output Rate [Hz]		125	\sim
SENT Tick Time [µs]		1.0	/		SENT Tick Time [µs]		1.0	\sim
Speed [kb/s]		4	-		Speed [kb/s]			4 🜩
Manchester Threshold [V]		1.500			Manchester Threshold [V]		1.50	0
SENT Threshold [V]		1.500			SENT Threshold [V]		1.50	0 🜩
PWM Threshold [V]		1.500			PWM Threshold [V]		1.50	0 🜩
Initial Command:					Initial Command:			
Auto Detect	Re	estore Defaults			Auto Detect	R	estore Defau	lts
	ОК	Cancel				ОК	Cano	cel

Figure 9: Device Setup, Digital Manchester Parameters

Unless there are problems, the default values can be used for all of the other parameters.

Turning the Device On/Off and Reading the Output

- 1. Click Power On.
- 2. The Vcc [V] and Icc [mA] fields in the right-hand side of the main window will be updated with the measured values. Verify that the voltage is what is desired, and that the device is consuming approximately 6 mA for single die, 13 mA for dual die. The Icc is an un-calibrated reading and should be used as a qualitative indicator.
- 3. Click **Power Off** to turn power off to the device. Icc will fall to 0.
- 4. Click **Power On** then click **Read Output**. All the angle, voltage, duty cycle and frequency fields will be updated.

Figure 10: Powered On and Updated

Reading from the device

Reading a Field

- 1. On the Main Window, click on the **EEPROM** Tab. The **Show**: popup should be showing **All Fields**.
- 2. Scroll down the table until you see **lin_coeff_00**.
- 3. Click on the checkbox that is next to **lin_coeff_00**.
- 4. Click on the **Read Selected**, The EEPROM tab will appear like Figure 11.

DEMO E	EPROM Short Stroke Trim Linearization (Dutput				
					~	
Show:	All Fields ~		Search		P	
Select	Name	Code	Value	Units	^	Read Selected
	toff_c					Write Selected
	lin_enable					
	lin_mode					Zero Selected
	lin_coeff_scalar					Clear Selected
	lin_coeff_active				_	
	ee_cust_spares_1					Select All
	lin_coeff_00	0	0			Deselect All
	lin_coeff_01					
	lin_coeff_02					
	lin_coeff_03					
	lin_coeff_04					
	lin_coeff_05					
	lin_coeff_06					
	lin_coeff_07					
	lin_coeff_08				\checkmark	
Linearizati	ion/binning coeff_0.				\wedge	
						Load
						Save
					\vee	Jave

Figure 11: Reading a Field

Reading a Memory Location

- 1. On the **Show**: pull down menu, select **All Memory Locations**.
- 2. Click on the checkbox that is next to **0x21**.
- 3. Click **Read Selected**. The window should appear as it does in Figure 12.

DEMO	EEPROM	Short Stroke Trim	Linearization	Output				
							_	
Show:	All Memo	ory Locations	~		Search Name and	d Description	ρ	
Select	Address	i i		Name		Code	^	Read Selected
	0x05			eeprom_5				Write Selected
	0x16			eeprom_16				white Selected
	0x17			eeprom_17				Zero Selected
	0x18			eeprom_18				Class Selected
	0x19			eeprom_19				Clear Selected
	0x1A			eeprom_1a				Select All
	0x1B			eeprom_1b				Deselect All
	0x1C			eeprom_1c				Descreet Au
	0x1D			eeprom_1d				
	0x1E			eeprom_1e				
	0x1F			eeprom_1f				
	0x20			eeprom_20				
	0x21			eeprom_21		0x0000000		
	0x22			eeprom_22				
	0x23			eeprom_23			~	
					· · · · · · · · · · · · · · · · · · ·		~	
								Load
								2000
							\lor	Save

Figure 12: Reading a Memory Location

4. To verify that the reading a field and reading a memory location are reading the same location, look at **lin_coeff_00**. If you look at location 0x21 the value in the field and the value in the memory location are the same (in this case 0x0).

Writing to the device

Writing a Field

- 1. Select **All Fields** from the **Show:** pull down menu.
- 2. Scroll down the table to the **lin_coeff_00** row.
- 3. Double click in the text entry box in the **Code** column of the **word** row.
- 4. Type **291** and press **Enter**. The Selected checkbox will be checked and the cell in the Value column will be set to 291.
- 5. Click Write Selected. The window should appear as it does in Figure 13.

DEMO	EPROM Short Stroke Trim Linearization	Output				
Show:	All Fields \checkmark		Search Name an	nd Description	P	
Select	Name	Code	Value	Units	^	Read Selected
	lin_coeff_scalar					Write Selected
	lin_coeff_active					White Sciected
	ee_cust_spares_1					Zero Selected
	lin_coeff_00	291	291			Clear Selected
	lin_coeff_01					
	lin_coeff_02					Select All
	lin_coeff_03					Deselect All
	lin_coeff_04					
	lin_coeff_05					
	lin_coeff_06					
	lin_coeff_07					
	lin_coeff_08					
	lin_coeff_09					
	lin_coeff_10					
	lin_coeff_11				×	
Linearizati	ion/binning coeff_0.				\wedge	
						Load
					~	Save

Figure 13: Writing a Field

- 6. To verify that the lin_coeff_00 field was written to the device, do the following:
 - a. Click Clear Selected. The values in the Code and Value cells should disappear.
 - b. Click **Read Selected**. The values that were written will reappear in the Code and Value cells.

Writing a Memory Location

Writing to a Memory Location is done the same way.

- 1. From the **Show:** pull down menu, select **All Memory Locations**.
- 2. To ensure that there is not any memory locations selected, click **Deselect All**.
- 3. Scroll down the table and click the checkbox in the **Select** column next to **0x21**.
- 4. Click **Read Selected**. The value in the Code column should be something like 0x0246000.
- 5. Change the 0x0246000 to 0x000321 by double-clicking in the field, typing **0x0642000**, and pressing **Enter**.
- 6. Click Write Selected. The memory location is now changed to **0x0642000**.
- 7. To verify that the memory location has been changed, select **All Fields** from the **Show:** pull down menu and scroll down to the **lin_coeff_00** row. It should now read 801.

Device Selection

MO EEPROM Short Steel	s melp				Power	
Actions					Voltage Supply [V]	5.000
Read Once		0			Power Off	Power On
Start Reads		$\overline{}$			Vcc [V]	4.99
Stop Reads		À			lcc [mA]	12.2
	270	- 90			Die 1	
					Output	
	t				Angle [Degrees]	127.3
	\searrow	\checkmark			Angle [LSBs]	231
					Mag Out A [LSBs]	
		180			Mag Out B [LSBs]	
Die 1		Die 2			Temperature [°C]	24.8
Output [V] 1.854	4 Angle [Degrees] 127.386	Output [V] 4.21	6 Angle [Degrees]	313.583	Output [Volts]	1.8
Output [%DC]	Angle [LSBs] 23190	Output [%DC]	Angle [LSBs]	57086	Read Out	tout
Output [Hz]	Zero Angle	Output [Hz]		Zero Angle	Hodd Od	iper 1
Errors:		Errors:				
ovd - ovd	^	ovd - ovd		~		

Figure 14: Device Selection

1. Select **Die 1** from the pop-up menu below the Power group to select the first die and **Die 2** to select the second die (ASEK-20 and ASEK-21 when "Enable dies to port mapping" is enabled).

Troubleshooting

Troubleshooting when using Manchester Protocol

- 1. If using a device setup to output Analog, is the 100nf capacitor settings for OUT enabled or is there a dedicated capacitor on OUT?
- 2. If using a device setup to output SENT or PWM, is the pull-up resister settings for OUT enabled or is there a dedicated pull-up resister on OUT, or is the output push-pull?
- 3. Click on the **Power On** while holding down the Ctrl key. This the turns power on for the device without checking for access. Verify that Vcc is within the operating range.
- 4. Turn off the device.
- 5. Turn on the device and verify using an oscilloscope that the access code was sent on the OUT line during the power up.
- 6. Looking at the access code that was sent, were the Manchester serial high level and serial low-level values within the spec for the device?
 - 6.1. If not, adjust the serial high level and serial low-level values in the Device Setup dialog in the programming application then go back to step 2.
- Perform a read and verify using an oscilloscope that there was a read response on the OUT line.
 7.1. If there was not a read response, slow down the communication speed and go back to step 2.

- 7.2. If there still is not a read response, make sure the access code is correct.
- 7.3. Make sure the address used is correct. For single die/device the address global can be used but for multiple die/devices, make sure the addresses are unique.
- 8. Once there is a read response, did the ASEK interpret the read response correctly?
 - 8.1. No. What was the error message?
 - 8.1.1.If the error was Timeout, using an oscilloscope, check the voltages of the response. Are the lower values below the threshold and the higher values above the threshold? If not, adjust the threshold so that is between the high and low values and go back to step 2.
 - 8.1.2. If the error was CRC error, retry the read. Try slowing down the communication speed.
- 9. Perform a write and verify using an oscilloscope that there was a write command.
- 10. Perform a read command to verify what was written previously.
 - 10.1. If the value read is not what was written?
 - 10.1.1. Verify that the part is not locked. If it is then try another part.
 - 10.1.2. Try another part to make sure the part is good.

Menu Bar

File

Load Memory File...

Restore the parameters set in a previous session. After selecting a file from the standard file browser, this command loads the parameters and selects them. The files do not have to contain all the parameters.

Save Memory File...

Saves the currently selected parameters to a file. After naming the file using the standard file browser, this command saves the selected parameters into the file. The files do not have to contain all the parameters.

Dump Memory...

Saves the entire memory map to a file. After naming the file using the standard file browser, this command saves the memory map into the file.

Exit

Exit the application.

Edit

Undo

Undo the last text box action, only enabled if the cursor is in a text box.

Cut

Copy the selected text onto the clipboard, only enabled if the cursor is in a text box.

Сору

Undo the last text box action, only enabled if the cursor is in a text box.

Paste

Paste from the clipboard into the currently highlighted text box, only enabled if the cursor is in a text box.

Select All

Select all the rows in the memory table.

Select Highlighted

Select all the rows in the memory table that are highlighted.

Deselect All

Deselect all the rows in the memory table.

Deselect Highlighted

Deselect all the rows in the memory table that are highlighted.

Restore Display Order

Sorts the memory table the same was as it was when the application was started.

Setup

Communication Setup...

Communic	ation Setup			×
COM Port:		~	Refresh	
Status				
Communicati	n: Inactive			
Programmer:				
Version:				
		ОК	Cancel	

Figure 15: Communication Setup Dialog

COM Port Pull Down Menu

This popup menu displays the currently available COM ports. The COM port that is attached to an ASEK-20 or ASEK-21 needs to be selected.

Refresh

The refresh button will update the contents of the COM Port Pull Down Menu and then try to establish communication with the ASEK-20 if one is selected.

Status

The status will show the status of communications with the ASEK-20/21.

Communication

If communication with the ASEK-20/21 has been established, then this field will be "Active" otherwise it will be "Inactive".

Programmer

If communication with the ASEK-20/21 has been established, then this field will be "ASEK-21" if communicating with an ASEK-21, "ASEK-20" if communicating with an ASEK-20 otherwise it will be blank.

Version

If communication has been established with the ASEK-20/21 then this field will display the version of the firmware in the ASEK-20/21.

OK

Save the com port chosen and close the dialog.

Cancel

Discard any changes made and close the dialog.

Device Setup...

🛑 Device Setup			\times
Protocol ASEK-20			
Device Package	Single Die		~
ID Die 1		Global	\sim
ID Die 2		Global	\sim
Device Output	Analog		\sim
Communication Enable Method	VCC Communication Enable		\sim
Communication Enable Voltage	M	10.300	•
Manchester High Voltage [V]		4.000	÷
Manchester Low Voltage [V]		0.300	÷
Speed [kb/s]		4	÷
Manchester Threshold [V]		1.500	•
Initial Command:			
Auto Detect	Re	store Defaults	
	ОК	Cancel	I

Figure 16: Device Setup, Analog Manchester Parameters

Device Package

The device output is a choice between Single Die or Dual Die.

ID Die 1

This is the ID used to communicate to die 1. The choices are:

- Global
- ID0
- ID1

ID Die 2

This is the ID used to communicate to die 2. The choices are:

- Global
- ID0
- ID1

Device Output

The device output is a choice between Analog, Digital with an Open Drain Driver or Digital with a Push-Pull Driver. When the choice is Analog the following controls are available:

Communication Method Popup Menu

This selects the method that the programmer will use to communicate to the A31315. The choices for Analog are:

- VCC Communication Enable
- Overdrive

Communication Enable Voltage [V] Text Entry Box

This is the voltage that Vcc will be set to when communicating with the A31315 when the communication method is VCC Communication Enable.

Manchester High Voltage [V] Text Entry Box

Used to set the voltage for the high level of the Manchester signal. The default is 4.0 Volts.

Manchester Low Voltage [V] Text Entry Box

Used to set the voltage for the low level of the Manchester signal. The default is 0.3 Volts.

Speed [kb/s] Text Entry Box

This is the bit rate that will be used when communicating with the A31315. The default is 4 kbps.

Manchester Threshold [V] Text Entry Box

This is the voltage that will be used to determine if the input is true or false when reading the Manchester signals. The default is 1.5 Volts.

Initial Command Text Entry Box

This is used for commands that need to be sent to the ASEK-20/21 when it is initialized.

Auto Detect

When clicked, the application will attempt to read the memory of the device and setup the communication parameters to facilitate communication.

Restore Defaults

When clicked, all the default values for the Manchester settings are restored.

🛑 Device Setup			×	Device Setup		×
Protocol ASEK-20				Protocol ASEK-20		
Device Package	Single Die	~		Device Package	Single Die	\sim
ID Die 1	[Global 🗸 🗸		ID Die 1		Global \sim
ID Die 2		Global 🗸 🗸		ID Die 2		Global \sim
Device Output	Digital, Open Drain	~		Device Output	Digital, Push-Pull	\sim
Communication Enable Method	VCC Communication Enable	~		Communication Enable Method	VCC Communication Enable	~
Communication Enable Voltage	[1]	10.300 🜲		Communication Enable Voltage [V]	10.300 🜲
PWM Output Rate [Hz]		125 🗸 🗸		PWM Output Rate [Hz]		125 🛛 🗸
SENT Tick Time [µs]		1.0 ~		SENT Tick Time [µs]		1.0 ~
Speed [kb/s]	[4 🖨		Speed [kb/s]		4 🜩
Manchester Threshold [V]	[1.500 🜲		Manchester Threshold [V]		1.500 🜲
SENT Threshold [V]	[1.500 🜲		SENT Threshold [V]		1.500 🜲
PWM Threshold [V]	[1.500 🜩		PWM Threshold [V]		1.500 🜩
Initial Command:]	Initial Command:		
Auto Detect	Res	tore Defaults]	Auto Detect	Re	estore Defaults
	ОК	Cancel			ОК	Cancel

Figure 17: Device Setup, Digital Manchester Parameters

Device Output

The device output is a choice between Analog or Digital with an Open Drain Driver or Digital with a Push-Pull Driver. When the choice is Digital the following controls are available:

Communication Method Popup Menu

This selects the method that the programmer will use to communicate to the A31315. The choices for PWM/SENT are:

- VCC Communication Enable
- Auxiliary Interrupt Pulse (PWM)
- Auxiliary Interrupt Pulse (SENT)
- Overvoltage + Auxiliary Interrupt Pulse (PWM)
- Overvoltage + Auxiliary Interrupt Pulse (SENT)

Communication Enable Voltage [V] Text Entry Box

This is the voltage that Vcc will be set to when communicating with the A31315 when the communication method is VCC Communication Enable.

PWM Output Rate [Hz] Popup Menu

This should be set to the carrier frequency of the PWM that the A31315 is generating when the communication method is Auxiliary Interrupt Pulse (PWM) or Overvoltage + Auxiliary Interrupt Pulse (PWM).

SENT Tick Time [µs] Popup Menu

This should be set to the tick time of the SENT messages that the A31315 is generating when the communication method is Auxiliary Interrupt Pulse (SENT) or Overvoltage + Auxiliary Interrupt Pulse (SENT).

Speed [kb/s] Text Entry Box

This is the bit rate that will be used when communicating with the A31315. The default is 4 kbps.

Manchester Threshold [V] Text Entry Box

This is the voltage that will be used to determine if the input is true or false when reading the Manchester signals. The default is 1.5 Volts.

SENT Threshold [V] Text Entry Box

Used to set the threshold for determining the difference between a 1 and a 0 when performing a SENT read. The default is 1.5 Volts.

PWM Threshold [V] Text Entry Box

Used to set the threshold for determining the difference between a 1 and a 0 when performing a PWM read. The default is 1.5 Volts.

Initial Command Text Entry Box

This is used for commands that need to be sent to the ASEK-20/21 when it is initialized.

Auto Detect

When clicked, the application will attempt to read the memory of the device and setup the communication parameters to facilitate that.

Restore Defaults

When clicked, all the default values for the Manchester settings are restored.

ASEK-20

When the programmer is connected to an ASEK-20, this tab is shown.

🛑 Device Setup	×
Protocol ASEK-20	
Out Pin Options	
Pull-up Resistor:	None 🗸 🗸
Pull-up Voltage:	5.000 🖨
Enable 100nf Capacitor	
	Restore Defaults
	OK Cancel

Figure 18: Device Setup with ASEK-20

Pull-Up Resister Popup Menu

Select none for no pull-up resister, 1.21K or 4.75K pull-up resister. This setting is automatically changed when switching between open-drain and push-pull modes. The default for open-drain is 1.21 K. The default for push-pull and Analog output is None.

Pull-Up Voltage

If a pull-up resister is selected this is the voltage that will be used to pull-up. The default is 5.0 Volts.

Enable 100nf Capacitor Check Box

This option connects the output to an 100nf capacitor. In Analog mode this is enabled by default. In Digital modes this is disabled by default.

Restore Defaults

When clicked, all the default values for the ASEK-20 settings are restored.

ASEK-21 Setup Options

When the programmer is connected to an ASEK-21, this tab is shown.

🛑 Device Setup	×
Protocol ASEK-21 ASEK-21 Extras	
Power Options Bypass Power Buffer	
Feedback:	Accurate (default) \sim
DSupply:	3.3 Volts 🗸 🗸
Override:	Use Selected Port $ \lor$
VOut Options	
Pull-up Voltage: Pull-up Resistor:	5.000 •
	Restore Defaults
	OK Cancel

Figure 19: Device Setup with ASEK-21

Bypass Power Buffer Check Box

By default, the power supplied by the ASEK-20 is buffered internally by the ASEK-21. This allows higher current supply. This check box allows that buffer to be bypassed and the power to come directly from the ASEK-20. When checked, the power is limited to what the ASEK-20 can supply (about 40 mA).

Feedback Pull Down Menu

When the power is buffered by the ASEK-21, one of three feedback loops can be used. The first, **Stable** is the most stable but the voltage will decrease with the current draw (about 10mV per mA). The second is **Accurate** which is the default. The third is **External** which uses the VCC_S from the module under test. This is the most accurate but the least stable.

DSupply Pull Down Menu

The DSupply pin can supply power separate from the VCC lines. It can only be one of four values and they are:

- No Voltage Supplied
- 5 Volts
- 3.3 Volts
- 2.7 Volts

Override Pull Down Menu

The Override is used to select which supply power and ground lines to use and can be separate from the Out lines. It can only be one of five values and they are:

- Use Selected Port Always use the power and ground lines specified by the port control.
- Use Port 1 Always use the power and ground lines on port 1
- Use Port 2 Always use the power and ground lines on port 2
- Use Port 3 Always use the power and ground lines on port 3
- Use Port 4 Always use the power and ground lines on port 4

Use Internal Pull-up Check Box

When checked, the Out line is pulled up by the designated resister by the chosen voltage.

Pull-up Voltage Text Entry Box

Selects the voltage that Out will be pulled up to.

Pull-up Resister Pull Down Menu

Selects either the 1K or 4.75K pull-up resister.

Restore Defaults

When clicked, all the default values for the ASEK-21 settings are restored.

ASEK-21 Extra Options

When the programmer is connected to an ASEK-21, this tab is shown.

Device Setup	×
Protocol ASEK-21 ASEK-21 Extras	
✓ Enable Dies to Port Mapping	
Die to Port Mapping	
Die 1	Port 1 V
Die 2	Port 2 ~
	Restore Defaults
	OK Cancel

Figure 20: Device Setup with ASEK-21 Extras

Enable Dies to Port Mapping Check Box

When checked, which port is used is controlled by the die selection.

Die 1 Pull Down Menu

When "Enable Dies to Port Mapping" is checked, the port menus are enabled and allow ports 1 to 4 to be selected when die 1 is selected from the die selection pop menu.

Die 2 Pull Down Menu

When "Enable Dies to Port Mapping" is checked, the port menus are enabled and allow ports 1 to 4 to be selected when die 2 is selected from the die selection pop menu.

Restore Defaults

When clicked, all the default values for the ASEK-21 Extras settings are restored.

ОК

Save the values chosen and close the dialog.

Cancel

Display as Decimal

Display the field's code and the digital output values as decimal.

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Display as Hexadecimal

Display the field's code and the digital output values as hexadecimal.

Extended Mode

When selected, two tabs are added to allow reading and writing of the Shadow and Volatile Registers.

Short Stroke Trimming Diagnostics

Enable the collection of diagnostics information to help with the debugging of short stroke trimming problems. Once the Position 2 button has been clicked and the short stroke trimming calculations have been completed, a save file browser window will appear to allow the user to name the file to save the diagnostics information into. This file should be sent to Allegro to help identify the problem.

Scripts

Run Script...

Allows the user to specify and run scripts written in the Allegro Script Language, C# or Visual Basic.

Any scripts in the directories "C:\ProgramData\Allegro MicroSystems\A31315 Samples Programmer\Scripts" and "C:\Users\{USER NAME}\AppData\Local\Allegro MicroSystems\A31315 Samples Programmer\Scripts" will be added to the menu so that they can be run just by selecting them.

A description of how to script is contained an a section at the end of this document.

Help

View Help Opens the help viewer and displays the help file for Allegro A31315 Samples Programmer.

A31315 Registers Diagram

Opens a window and displays the A31315 register diagram.

431315 Re	gisters Diagram								—	
PROMS	hadow Volatile									
	1									
			Bit N	umber						
Address	25 24 23 22 21 20	19 18 17 16	15 14 13	12 11	10 09	08 07 0	06 05	04 03	02 01	00
)x05	burn_init_adig_o	channel_hyst_c_b			cł	annel_hyst_c_a	l i		be_miller	en
)x16			pre	sat_hi			pre_s	sat_lo		pre_s
0x17			pol_c			offs_c_	a			
0x18		offstc1_hot_c_a				offst	tc1_cld_c_	a		
0x19						sens_c	_a			
0x1A		senstc1_hot_	c_a			St	enstc1_cld	l_c_a		
)x1B		sens	tc2_hot_c_a				senstc2	_cld_c_a		
lx1C			pol_c			offs_c_	b			
)x1D		offstc1_hot_c_b				offst	tc1_cld_c	b		
0x1E						sens_c	b			
0x1F		senstc1_hot_	c_b			S	enstc1_cld	i_c_b		
0x20	toff_c	sens	stc2_hot_c_b				senstc2	_cld_c_b		
0x21	lin_co	peff_00		ee_cust_spa	ares_1	lin_coeff_acti	ve	lin_coeff_sc	lin_mode	lin_en
0x22	lin_co	peff_02				lin_co	eff_01			
0x23	lin_co	peff_04				lin_co	eff_03			
0x24	lin_co	peff_06				lin_co	eff_05			
0x25	lin_co	peff_08				lin_co	eff_07			
0x26	lin_co	peff_10				lin_co	eff_09			
0x27	lin_co	peff_12				lin_co	eff_11			
0x28	lin_co	peff_14				lin_co	eff_13			
0x29	lin_co	peff_16				lin_co	eff_15			
0x2A	lin_co	peff_18				lin_co	eff_17			
)x2B	lin_co	peff_20				lin_co	eff_19			
0x2C	lin_co	peff_22				lin_co	eff_21			
)x2D	lin_co	peff_24				lin_co	eff_23			
0x2E	lin_co	peff_26				lin_co	eff_25			
0x2F	lin_co	peff_28				lin_co	eff_27			
0x30	lin_co	peff_30				lin_co	eff_29			
0x31	lin_co	peff_32				lin_co	eff_31			
0x32				pre_	gain_offset				byp_cordic	cordic
0x33	bin	hyst				angle_gain				
0x34	post_gain_sat_val	post			post_ga	ain_offset				post_
0x35			mag_thresh_r	nax	mag	t	mag_thr	esh_min		mag_t
0x36						lower_clamp				
0x37	bw_adap_max bw_adap_m	in bw_sel_filter				upper_clamp				
0x38	por_in	it_config	dly	fall		g	ain_exp		gain_frac	
0x39	sent_init code	an sent_escn_cisent ise	ent_i sent_dr	ive sent t	ticks_clk_m	um_pwm_per	sent_d	ata_cfg	devicedigital	outp
)x3A	sent	, _, _,		sent	emsg_enable		_			
)x3B	make_ee_cust_spa	sat_cosat_livef_fau	lt_fil fault f	ilt ovcc	uvcc_spe	nese_mpor_nsm	_mslf_m	ofe_msat_m	tse_maoc_n	acf_m
)x3C	unloci mem lock manch	riggblock vcc ovcc u e	e_cust_spares (be scal	le beb	vdig_orout err	rest e	err min	analogsdata	sdata
)x3D							- 4	- 1	ч -	
0x3E										

Figure 21: A31315 Register Diagram Window

Allegro MicroSystems Software Web Site

Opens the web browser to the Allegro MicroSystems Software Web site.

Allegro MicroSystems Web Site

Opens the web browser to the Allegro MicroSystems Web site.

About Allegro A31315 Samples Programmer

Figure 22: About Allegro A31315 Samples Programmer Dialog Box

Displays the version of the application and the Allegro specific DLLs.

Status Field

The status field displays the current operations that are ongoing and any error messages.

Communication Status Indicator

The colored rectangle on the right hand side of the status bar displays the communication status. If it is green then there is communication with the ASEK otherwise it will be red. If the communication is with an ASEK-20 or ASEK-21 then the port will be displayed on the status indicator.

Power

Figure 24: Power Group

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Voltage Supply Text Box

The "Voltage Supply" text box sets the voltage that will be supplied to the part. Any changes in value will not be used until the power on button is pressed.

Power On Button

Sets the supply voltage for the device to the value given in the Voltage Supply text box and then turns the power on and sends the access code and checks to see if access is granted. If the power is already on, it will turn the power off then turn the power back on.

If the Ctrl key is held down when clicking this button, the power is applied to the device but the access code is not sent.

Power Off Button

Turns off the power to the device.

Vcc Text Box

The "Vcc" text box displays the current value of the supply voltage of the device.

Icc Text Box

The "Icc" text box displays the current value of the supply current of the device. This is an un-calibrated reading and should be used as a qualitative indicator.

Die Selection

When in dial die mode, this popup allows the selection of which die is read or written to.

Output Group

		Output	
Output		Angle [Degrees]	213.558
Angle [Degrees]	83.705	Angle [LSBs]	38877
Angle [LSBs]	15238	Mag Out A [LSBs]	17621
Mag Out A [LSBs]	-4432	Mag Out B [LSBs]	23877
Mag Out B [LSBs]	-9538	Temperature [°C]	28.750
Temperature [°C]	30.875	Duty Cycle [%]	58.982
Output [Volts]	1.255	Frequency [Hz]	122.715
Read Output		Read Output	

Figure 25: Output Group, Analog and Digital

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

Read Output Button

The **Read Output** button reads Vcc, Icc, and the output values from the selected die (if dual die).

Angle [Degrees] Text Box This text box displays the angle.

Angle [LSBs] Text Box This text box displays the angle.

Mag Out A [LSBs] Text Box This text box displays the magnitude of the output of channel A.

Mag Out B [LSBs] Text Box This text box displays the magnitude of the output of channel B.

Temperature [°C] **Text Box** This text box displays the temperature.

Output [Volts] Text Box (Analog Only) This text box displays the voltage output by the device.

Duty Cycle [%] Text Box (SENT/PWM Only) This text box displays the duty cycle output by the device.

Frequency [Hz] Text Box (SENT/PWM Only)

This text box displays the carrier frequency of the PWM output by the device.

Demo

Figure 26: Demo

Reading from the Device

- 1. Click Read Output. Angle, output (voltage or PWM) and the temperature fields will be updated.
- 2. Clicking **Read Once** will update the angle, output (voltage or PWM) and the temperature fields.
- 3. Clicking **Start Read** will continuously update the angle, output (voltage or PWM) and the temperature fields until **Stop Reads** is clicked.

Zeroing the Angle

1. Click **Zero Angle** to read the angle and then set pre_gain_offset so that the angle read will be zero.

Reference

Read Once Button

Update the angle, output (voltage or PWM) and the temperature fields in the window. If dual die is selected, updates both die.

Start Reads Button

Start a periodic update for angle, output (voltage or PWM) and the temperature fields on the page. If dual die is selected, updates both die.

Stop Reads Button

Stop the periodic update for angle, output (voltage or PWM) and the temperature fields on the page. If dual die is selected, updates both die.

Die # Group

The information specific to the die are displayed in the following fields. If single die is selected, then all of the fields in the Die 2 group are grayed out.

Output [V] Text Box

This is the voltage value read from the die if analog output mode is selected.

Output [%DC] Text Box

This is the PWM duty cycle value read from the die if the digital output mode is selected.

Output [Hz] Text Box

This is the PWM carrier frequency value read from the die if the digital output mode is selected.

Angle [Degrees] Text Box

This is the angle value read from the die and displayed in degrees.

Angle [LSBs] Text Box

This is the angle value read from the die and displayed in degrees.

Zero Angle Button

Reads the current angle value then programs the A31315 to make it read zero.

Errors Text Box Contains the list of error flags read from the die.

EEPROM

DEMO	EPROM Shadow Volatile Short Stroke Tri	im Linearization Or	utput			
Show:	All Fields \checkmark		Search Name an	d Description	٩	
Select	Name	Code	Value	Units	^	Read Selected
	be_miller_en					Write Selected
	channel_hyst_c_a					White beleeted
	channel_hyst_c_b					Zero Selected
	dig_opendr_e					Clear Selected
	init_ana_out					
	bum_in_test_en					Select All
	pre_sat_en					Deselect All
	pre_sat_lo					
	pre_sat_hi					
	offs_c_a					
	pol_c_a					
	offstc1_cld_c_a					
	offstc1_hot_c_a					
	sens_c_a					
	senstc1_cld_c_a				~	
					\wedge	
						Load
						Save
					\vee	Jave

Figure 27: EEPROM

Show Popup Control

Used to toggle the display of the Memory field table between All Memory Locations, All Fields, Linearization Fields or the Short Stroke Fields in the EEPROM.

Search Name and Description Test Box

Text entered into this text box will be searched for in the names and descriptions of the fields and memory locations.

Table

The table displays the fields and memory locations in a spreadsheet.

Select

This column is used to select the rows which the buttons are to operate on.

Address (Only for Memory Locations)

Displays the address of the memory location.

Name

Displays the name of the field or memory location. If the mouse is hovered over the cell, a longer version of the name is displayed in a tool tip.

Code

The code column displays the decimal or hexadecimal version of the data in the field or memory location. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip.

Value

The value column displays a version of the data that has been interpreted in the units that are defined for the field or memory location. For example, the lin_enable field is displayed as true or false. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip. This column is only displayed for fields.

Units

If the value column has units, then the units are displayed in this column. This column is only displayed for fields.

Read Selected

Read all the selected rows from the device.

Write Selected

Write all the data from the selected rows to the device.

Zero Selected

Put a zero into the code column of the selected rows. The value is not written to the device until **Write Selected** is pressed.

Clear Selected

Clear the code and value columns of the selected rows.

Select All

Select all the rows in the table.

Deselect All Deselect all the rows in the table.

Load Load the field or memory location values from a file.

Save

Save the selected field or memory location values to a file.

Shadow

DEMO E	EEPROM Shadow Volatile Short Stroke Tr	rim Linearization (Dutput			
Ch.			Court News	- I December -	0	
Show:	All Heids V		Search Name a	nd Description	~	
Select	Name	Code	Value	Units	^	Read Selected
	be_miller_en					Write Selected
	channel_hyst_c_a					
	channel_hyst_c_b					Zero Selected
	dig_opendr_e					Clear Selected
	init_ana_out					
	bum_in_test_en					Select All
	pre_sat_en					Deselect All
	pre_sat_lo					
	pre_sat_hi					
	offs_c_a					
	pol_c_a					
	offstc1_cld_c_a					
	offstc1_hot_c_a					
	sens_c_a					
	senstc1_cld_c_a				~	
					\wedge	
					\sim	Copy to EEPROM

Figure 28: Shadow

Show Popup Control

Used to toggle the display of the Memory field table between All Memory Locations and All Fields in the EEPROM.

Search Name and Description Test Box

Text entered into this text box will be searched for in the names and descriptions of the fields and memory locations.

Table

The table displays the fields and memory locations in a spreadsheet.

Select

This column is used to select the rows which the buttons are to operate on.

Address (Only for Memory Locations)

Displays the address of the memory location.

Name

Displays the name of the field or memory location. If the mouse is hovered over the cell, a longer version of the name is displayed in a tool tip.

Code

The code column displays the decimal or hexadecimal version of the data in the field or memory location. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip.

Value

The value column displays a version of the data that has been interpreted in the units that are defined for the field or memory location. For example, the lin_enable field is displayed as true or false. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip. This column is only displayed for fields.

Units

If the value column has units, then the units are displayed in this column. This column is only displayed for fields.

Read Selected

Read all the selected rows from the device.

Write Selected

Write all the data from the selected rows to the device.

Zero Selected

Put a zero into the code column of the selected rows. The value is not written to the device until **Write Selected** is pressed.

Clear Selected Clear the code and value columns of the selected rows.

Select All Select all the rows in the table.

Deselect All Deselect all the rows in the table.

Copy to EEPROM

Copies the selected fields to the corresponding fields in the EEPROM table.

Volatile (Extended Mode Only)

DEMO E	EPROM Shadow Volatile Short Stroke T	rim Linearization C	Output			
Show:	All Fields \sim		Search Name a	nd Description	P	
Select	Name	Code	Value	Units	^	Read Selected
	margin_start					Write Selected
	margin_no_max					White Selected
	margin_no_min					Zero Selected
	margin_status					Clear Selected
	margin_min_max_fail					
	ee_use_test_addr					Select All
	ee_test_addr					Deselect All
	ee_loop					
	factory_access					
	customer_access					
	factory_eeprom_lock_wr					
	factory_eeprom_lock_rd					
	customer_eeprom_lock_wr					
	customer_eeprom_lock_rd					
	factory_register_lock_wr				~	
					\sim	
					\sim	

Figure 29: Volatile

Show Popup Control

Used to toggle the display of the Memory field table between All Memory Locations and All Fields in the EEPROM.

Search Name and Description Test Box

Text entered into this text box will be searched for in the names and descriptions of the fields and memory locations.

Table

The table displays the fields and memory locations in a spreadsheet.

Select

This column is used to select the rows which the buttons are to operate on.

Address (Only for Memory Locations)

Displays the address of the memory location.

Name

Displays the name of the field or memory location. If the mouse is hovered over the cell, a longer version of the name is displayed in a tool tip.

Code

The code column displays the decimal or hexadecimal version of the data in the field or memory location. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip.

Value

The value column displays a version of the data that has been interpreted in the units that are defined for the field or memory location. For example, the lin_enable field is displayed as true or false. If the field or memory location is writable, double clicking on the cell will allow the value to be changed. The new value is not written to the device until the **Write Selected** button is pressed. When the cursor is held over the cell, any documentation about the range of values it is display in a tool tip. This column is only displayed for fields.

Units

If the value column has units, then the units are displayed in this column. This column is only displayed for fields.

Read Selected

Read all the selected rows from the device.

Write Selected

Write all the data from the selected rows to the device.

Zero Selected

Put a zero into the code column of the selected rows. The value is not written to the device until **Write Selected** is pressed.

Clear Selected Clear the code and value columns of the selected rows.

Select All Select all the rows in the table.

Deselect All Deselect all the rows in the table.

Short Stroke Trim

DEMO EEPROM Short Stroke Trim	Linearization Output	
Trim		
Rotation: Counter Clockwit $ \smallsetminus $	Die 1 Position 1 Position 2	Die 2 Position 1 Position 2
Input Units: Degrees \lor	Input: 0.000 🖨 359.995 🖨	Input: 0.000 🜩 359.995 🜩
Template: None ~	Offset: 0.000 🗲	Offset: 0.000
Percent: 50.000 \$	Post Offset Actions: Rollover ~	Post Offset Actions: Rollover ~
	Saturation Offset: 0.000	Saturation Offset: 0.000
Maak Angle Outside of Clampa	Desired: 0.000 🖨 359.995 🜩	Desired: 0.000 🜩 359.995 🜩
Output Units: Degrees ~	Clamps: 0.000 🛨 359.995 🛨	Clamps: 0.000 🖕 359.995 🖕
DAC Scale: 0% 100% ~	Set Position 1 Set Position 2	Calculate and Program Device
360		
<u></u> 270		
el loo		
2 180		
90 <u></u>		
0		
0	90 180	270 360
	Input [Degrees]	

Figure 30: Short Stroke

The short stroke trim tab is used when a full rotation of the target is not possible or desirable.

Program Short Stroke

- 1. Determine the type of short stroke:
 - a. If the curve for the die is to be rising, enter the lesser value in desired position 1 and the greater value in desired position 2.
 - b. If the curve for the die is to be falling, enter the greater value in desired position 1 and the lesser value in desired position 2.

If dual die is required, fill in the values for both die.

- 2. If clamps are desired, fill in the clamp values for position 1 (Low Clamp) and position 2 (High Clamp).
- 3. Move the magnet to Position 1.
- 4. Click Set Position 1.
- 5. Move the magnet to Position 2.
- 6. Click Set Position 2.

7. Click Calculate and Program Device.

Reference

Rotation Direction

This pop-up menu selects in which direction the magnetic field rotates to cause an increase in angle. The choices are "Clockwise" or "Counter Clockwise".

Input Units Pop-up Menu

This pop-up menu selects which units will be used in the input text boxes and displayed in the Input Angle controls. The options are Degrees, Percentage and LSBs.

Template Pop-up Menu

This pop-up menu is enabled when dual die is selected and selects how the second die will be handled. The options are:

- None No template is used. The user has full control over what is programmed into the second die.
- Crossing The second die will be set to be an inverse version of the first die.
- Reduced The second die will be a reduced version of the first die and the amount will depend on the value in the percent control.

Percent Numeric Text Box

When **Reduced** is selected from the **Template** pop-up menu, this controls what percentage the second die output will be in relationship to the first die.

Mask Angle Outside of Clamps Checkbox

When checked, the AOC flag will be masked.

Output Units Pop-up Menu

This pop-up menu selects which units will be used in the desired and limit text boxes and displayed in the Output Angle controls. When Analog is selected as the device output, the options are Degrees, Percentage and Volts. When PWM is selected as the device output, the options are Degrees, Percentage and Duty Cycle.

DAC Scale Pop-up Menu (Voltage output only)

If the device output is voltage, this pop-up menu selects the range of DAC values. The possible values are:

- 0% 100%
- 4% 96%
- 5% 95%
- 6% 94%
- 7% 93%

- 8% 92%
- 10% 90%
- 15% 85%

Input Position 1 Text Box

The reading from the device at position 1.

Input Position 2 Text Box

The reading from the device at position 2.

Offset Numeric Text Box

The offset will shift the start of the output by this amount divided by the gain.

Post Offset Actions Popup Menu

There are 2 post gain actions:

- 1. Rollover The output will wrap from highest value to lowest or from lowest value to highest.
- 2. Saturate The output will stay at the highest value.

Saturation Offset Check Box

Enable the saturation.

Saturation Offset Numeric Text Box

The is the value where the output will transition from high to low if the output is saturated.

Desired Position 1 Numeric Text Box

After programming, when the input is at position 1, this is the value that will be output by the A31315.

Desired Position 2 Numeric Text Box

After programming, when the input is at position 2, this is the value that will be output by the A31315.

Clamps Position 1 Numeric Text Box

After programming, when the output value is less than this value, this is the value that will be output by the A31315.

Clamps Position 2 Numeric Text Box

After programming, when the output value is greater than this value, this is the value that will be output by the A31315.

Set Position 1 Button Sets position 1. If dual die than reads position 1 for both die 1 and die 2.

Set Position 2 Button

Sets position 2. If dual die than reads position 2 for both die 1 and die 2.

Calculate and Program Button

Calculate the parameters and write them to the device. If dual die than calculates the desired outputs for both die 1 and die 2.

Output Graph

Shows the output of the A31315. Shows the expected output curve(s) with the settings that have been entered.

Linearization

Disabled Linearization

DEMO EEPROM	Shadow Volatile	Short Stroke Trim Linea	arization Output
Linearization Mode:	Disabled	~	
Read Angle	Clear Angles	Load Angles	Save Angles Write to Device Save to File

Figure 31: Linearization – Disabled

This mode disables linearization.

Write to Device

The linearization parameters needed to disable linearization are written to the device. If the device is a dual die device then both die will have linearization disabled.

Save to File...

Saves the parameters needed to disable linearization. If the device is a dual die device then two files will be generated with the name is the one selected with "_die1" or "_die2" appended to the filename.

DEMO EEPROM	Short Stroke Trim Lineariz	ation Output	
Linearization Mode:	Fixed Point Linearization	✓ Short Stroke Mode	Number of Positions: 33 ~
Die 1		Die 2	
Desired Angle	Measured Angle	Position ^ Desired Angle	Measured Angle Position
		0.000	0.000
		11.250	11.250
		22.500	22.500
		33.750	33.750
		45.000	45.000
		56.250	56.250
		67.500	67.500
		78.750	78.750
		90.000	90.000
		101.250	101.250
		112.500	112.500
		123.750	123./50
		135.000	135.000
		146.250	146.250
		107.500	157.500
		100.000	168.750
		101 245	101 245
Read Angle	Remove Angle	Read Angle	e Remove Angle
Read Both Die	Clear Angles	Load Angles Save Angles	Write to Device Save to File

Fixed Point Linearization

Figure 32: Linearization - Fixed Point

To linearize the device, click on the **Linearization** tab

- 1. If the device had been short stroke trimmed then check **Short Stroke Mode.** This should improve the accuracy of the calculated coefficients around the end points of the short stroke.
- 2. Select the number of positions (coefficients).
- 3. The angle data needs to be entered into one of the left hand tables. To read the angle data in from a file:
 - a. Click **Load Angles...** at the bottom of the angles table. A file browser dialog box will appear.
 - b. Locate the file containing the angle data and select it. The **Desired Angle** and **Measured Angle** rows will be filled in.
- 4. If the angle data is to be read from the device:

- a. Fill in the **Desired Angle** for the first position, then move the magnet to the first position and click **Read Angle**. If a dual device is being used then if **Read Both Die** is hit then the angle data is read for both die and inserted into the tables.
- b. Move the magnet to the next locations. At each location, fill in the **Desired Angle** and then click **Read Angle**.
- 5. If the graph looks correct, click **Write to Device**. The programmer will write the linearization data to the device and then copy the linearization data to the EEPROM.

Reference

Number of Positions Popup Menu

Selects the number of positions (coefficients) that will be generated.

Input Angle Table

This is a table(s) of encoder values and read angles. The table for Die 2 is only writable when using a dual die device.

Position Table

This is a table of where the coefficients will be positioned. These fields will not be modifiable.

Read Angle

Read the angle from the A31315 and insert it into the table at the row that is selected and then moves the selection to the next row.

Remove Angle

Removes the row containing the selection from the table.

Read Both Die (Dual die device only)

Read the angles from both dies of the A31315 and insert them into the tables at the row that is selected and then moves the selection to the next row.

Load Angles...

Read in the angle input file (file format detailed later in this document).

Clear Angles

Clear the angles from the angle table.

Save Angles...

Save the angles in the angle table in a file.

Write to Device

The linearization parameters are written to the device. If the device is a dual die device then both die will have linearization enabled and the coefficients written.

Save to File...

Saves the parameters needed to set the linearization mode that is defined on this tab. If the device is a dual die device then two files will be generated with the name is the one selected with "_die1" or "_die2" appended to the filename.

DEMO E	EPROM SI	hort Stroke Trim Linea	nization	Output								
Linearizatio	on Mode: F	ixed Point Binning	~	 Bin Mode Hyst 	eresis (Degrees):	0.0	00000	Number	of Positio	ns: 2		\sim
Die 1			Di	ie 2		_	20					
Input	Angle	Output Angle	l	Input Angle	Output Angle		36	, 				
	359 995	5		359 995	5							
	000.000			000.000	·							
							27	ין				\neg
							utput					
							0 8 18	יי				-
							Dev					
							90) 			<u> </u>	-
							(₀ 			 	
		_						0 9	0 18	0 2	70	360
Re	ad Angle			Read Angle					Inp	out		
Read E	Both Die	Clear Angles	Lo	ad Angles	Save Angles		W	hite to Dev	/ice	Sav	e to Fi	le

Fixed Point Binning

Figure 33: Binning - Fixed Point

To linearize the device, click on the Linearization tab

- 1. Select the number of bins from Number of Positions.
- 2. The angle data needs to be entered into one of the left hand tables. To read the angle data in from a file:
 - a. Click **Load Angles...** at the bottom of the angles table. A file browser dialog box will appear.
 - b. Locate the file containing the angle data and select it. The **Output Angle** rows will be filled in.
- 3. If the angle data is to be read from the device:
 - a. Move the magnet to the first position and click **Read Angle** or if on a dual die device **Read Both Die**.

- b. Move the magnet to the next locations. At each location, click **Read Angle** or if on a dual die device **Read Both Die**.
- 4. If the graph looks correct, click **Write to Device**. The programmer will write the linearization data to the device and then copy the linearization data to the EEPROM.

Reference

Number of Positions Popup Menu

Selects the number of positions (coefficients) that will be generated.

Input Angle Table

This is a table(s) of Input Angles which are fixed and read only and the output angles The table for Die 2 is only writable when using a dual die device.

Bin Mode Hysteresis (Degrees): Numeric Text Box

Use this field to set the desired hysteresis for the input.

Read Angle

Read the angle from the A31315 and insert it into the table at the row that is selected and then moves the selection to the next row.

Read Both Die (Dual die device only)

Read the angles from both dies of the A31315 and insert them into the tables at the row that is selected and then moves the selection to the next row.

Load Angles...

Read in the angle input file (file format detailed later in this document).

Clear Angles

Clear the angles from the angle table and clear the harmonics table.

Save Angles...

Save the angles in the angle table in a file.

Write to Device

The linearization parameters are written to the device. If the device is a dual die device then both die will have linearization enabled and the coefficients written

Save to File...

The linearization parameters are written to the device. If the device is a dual die device then two files will be generated with the name is the one selected with "_die1" or "_die2" appended to the filename.

Output Graph

Shows the binning curve.

Variable Point Linearization

DEMO EEPROM S	Short Stroke Trim Linearia	ation Output			
Linearization Mode:	Variable Point Linearization	n 🗸 🗌 Short Stroke Mode		Number of Positio	ns: 22 🜩
Die 1		Die	2		
Desired Angle	Measured Angle	Position ^ De	sired Angle	Measured Angle	Position ^
		0.000			0.000
		11.250			11.250
		22.500			22.500
		33.750			33.750
		45.000			45.000
		56.250			56.250
		67.500			67.500
		78.750			78.750
		90.000			90.000
		101.250			101.250
		112.500			112.500
		123.750			123.750
		135.000			135.000
		146.250			146.250
		157.500			157.500
		168.750			168./50
	1				180.000
Read Angle	Remove Angle	191.245	Read Angle	Remove Angle	191.245
Read Both Die	Clear Angles	Load Angles Save	Angles	Write to Device	Save to File

Figure 34: Linearization - Variable Point

To linearize the device, click on the **Linearization** tab

- 1. Enter the number of points that are to be collected in **Number of Input Angles.**
- 2. Select the number of positions (coefficients).
- 3. Fill in the right hand table. This table contains the locations of the coefficients.
- 4. The angle data needs to be entered into one of the left hand tables. To read the angle data in from a file:
 - a. Click **Load Angles...** at the bottom of the angles table. A file browser dialog box will appear.
 - b. Locate the file containing the angle data and select it. The **Desired Angle** and **Measured Angle** rows will be filled in.
- 5. If the angle data is to be read from the device:
 - a. Fill in the **Desired Angle** for the first position, then move the magnet to the first position and click **Read Angle**.
 - b. Move the magnet to the next locations. At each location, fill in the **Desired Angle** and then click **Read Angle**.

6. If the graph looks correct, click **Write to Device**. The programmer will write the linearization data to the device and then copy the linearization data to the EEPROM.

Reference

Number of Positions Numeric Text Box

Selects the number of positions (coefficients) that will be generated.

Input Angle Table

This is a table(s) of encoder values and read angles. The table for Die 2 is only writable when using a dual die device.

Position Table

This is a table(s) of where the coefficients will be positioned. The table for Die 2 is only writable when using a dual die device.

Read Angle

Read the angle from the A31315 and insert it into the table at the row that is selected and then moves the selection to the next row.

Remove Angle

Removes the row containing the selection from the table.

Read Both Die (Dual die device only)

Read the angles from both dies of the A31315 and insert them into the tables at the row that is selected and then moves the selection to the next row.

Load Angles...

Read in the angle input file (file format detailed later in this document).

Clear Angles

Clear the angles from the angle table and clear the harmonics table.

Save Angles...

Save the angles in the angle table in a file.

Write to Device

The linearization parameters are written to the device. If the device is a dual die device then both die will have linearization enabled and the coefficients written.

Save to File...

Saves the parameters needed to set the linearization mode that is defined on this tab. If the device is a dual die device then two files will be generated with the name is the one selected with "_die1" or "_die2" appended to the filename.

Variable Point Binning

DE	MO EEPROM	Short Stroke Trim	Linearizatio	Output							
Line	earization Mode:	Variable Point Binn	ing `	 Bin Mode Hyst 	teresis (Degrees):	0.0	00000	Numb	er of Positio	ns:	21 🌩
L F.	Die 1		D	ie 2				200			
	Input Angle	Output Angle	^	Input Angle	Output Angle	^		360			
	0.00	0		0.000		-					
	359.99	5	- -	359.995		-					
			- -			-		270			
			- -			-					
			- -				=				
							Jutp				
						_	ice (180			
			- -			-	Dev				
			- -			-					
			- -			-		90			
			- -								
			-								
						-		0	00 19	20 27	20 260
						×		U	90 10	. 0	0 300
	Read Angle			Read Angle					Inp	out	
	Read Both Die	Clear Angles	Lo	ad Angles	Save Angles			Write to [Device	Save	e to File

Figure 35: Binning - Variable Point

To linearize the device, click on the **Linearization** tab

- 1. Enter the number of bins in **Number of Positions.**
- 2. The angle data needs to be entered into one of the left hand tables. To read the angle data in from a file:
 - a. Click **Load Angles...** at the bottom of the angles table. A file browser dialog box will appear.
 - b. Locate the file containing the angle data and select it. The **Input Angle** and **Output Angle** rows will be filled in.
- 3. If the angle data is to be read from the device:
 - a. Move the magnet to the first position and click **Read Angle** or if on a dual die device **Read Both Die**.
 - b. Move the magnet to the next locations. At each location, click **Read Angle** or if on a dual die device **Read Both Die**.
- 4. If the graph looks correct, click **Write to Device**. The programmer will write the linearization data to the device and then copy the linearization data to the EEPROM.

Reference

Number of Positions Popup Menu

Selects the number of positions (coefficients) that will be generated.

Input Angle Table

This is a table of Input Angles which are fixed and read only and the output angles.

Bin Mode Hysteresis (Degrees): Numeric Text Box

Use this field to set the desired hysteresis for the input.

Read Angle

Read the angle from the A31315 and insert it into the table at the row that is selected and then moves the selection to the next row.

Load Angles...

Read in the angle input file (file format detailed later in this document).

Clear Angles

Clear the angles from the angle table and clear the harmonics table.

Save Angles... Save the angles in the angle table in a file.

Write to Device

The linearization parameters are written to the device. If the device is a dual die device then both die will have linearization enabled and the coefficients written.

Save to File...

Saves the parameters needed to set the linearization mode that is defined on this tab. If the device is a dual die device then two files will be generated with the name is the one selected with "_die1" or "_die2" appended to the filename.

Output Graph Shows the binning curve.

Output

Load from File... Button Read the output parameters from a text or CSV input file.

Read from Device Button

The parameters are read from the device.

Write to Device Button

The output parameters are written to the device. If the device is a dual die device, then the parameters are written to both die.

Save to File... Button

Saves the parameters needed to set the output mode that is defined on this tab.

Analog Output					
DEMO EEPROM Shadow V	/olatile Short Stroke Trim	Linearization	Output		
Output on ANALOG Pin:					
Load Capacitance [nF]:	0 -		\sim		
DAC Scale:	0%100%		\sim		
Output Response To Errors:	High-Z		\sim		
Angle Updates to Trigger Error:	0		\sim		
Angle Updates to Clear Error:	0		\sim		
Initial Output Value:	Low		\sim		
Additional Power Up Delay:	0.5 ms		\sim		
Analog Output					
Read Output					
Load from File Read Fro	om Device			Write to Device	Save to File

Figure 36: Output Tab, Analog

The A31315 can transmit sensor data using a voltage output being proportional to the measured angle on the output pin.

Load Capacitance [nF] Pull Down Menu

Sets the carrier frequency for the PWM output.

DAC Scale Pull Down Menu

This is how many times the sensor has to update before the error flags are cleared.

Output Response To Errors Pull Down Menu

Selects the driver used by the device. The choices are:

- Open Drain
- Push-Pull

Angle Updates to Trigger Error Pull Down Menu The range is from 0, the shortest to 7 to the longest.

Angle Updates to Clear Error Pull Down Menu The range is from 0, the shortest to 7 to the longest.

Initial Output Value Pull Down Menu The range is from 0, the shortest to 7 to the longest.

Additional Power Up Delay Pull Down Menu The range is from 0, the shortest to 7 to the longest.

Analog Output Text Box Displays the read analog voltage.

Read Button Reads the voltage from the Output pin.

PWM Output

DEMO EEPROM Sh	ort Stroke Trim Linearization Output		
SENT/PWM Pin:	PWM	\sim	
Carrier Frequency [Hz]:	125	\sim	
Updates to Clear Error:	0	\sim	
	Tristate Output when Error Flags Set		
Output Drive:	Open Drain	\sim	
	Enable Fall Time Control		
Fall Time:	0 - Quickest	\sim	
PWM Output			
Read Output			
Load from File	Read From Device		Write to Device Save to File

Figure 37: Output Tab, PWM

The A31315 can transmit sensor data using pulse-width-modulated output with duty cycle being proportional to the measured angle on the output pin. The PWM duty cycle ranges between 2% (corresponding to 0° angle) and 98% (corresponding to 360° angle).

Carrier Frequency [Hz] Pull Down Menu

Sets the carrier frequency for the PWM output.

Updates to Clear Error Pull Down Menu

This is how many times the sensor has to update before the error flags are cleared.

Tristate Output when Error Flags Set Check Box

When checked, the output will be disabled when the error flags are set.

Output Drive Pull Down Menu

Selects the driver used by the device. The choices are:

- Open Drain
- Push-Pull

Enable Fall Time Control Check Box

When checked, the fall time control is enabled.

Fall Time Pull Down Menu

The range is from 0, the shortest to 7 to the longest.

PWM Output Text Box

Displays the received PWM data.

Read Button

Reads the Duty Cycle and Frequency from the Output pin.

SENT Output						
DEMO EEPROM S	Shadow Vo	latile Short Stroke Trim	Linearization	Output		
SENT/PWM Pin:	SENT		~			
Tick Time:	1.0 µs		~	Updates to Clear Error:	0	
Output Rate:	Variable		~		Tristate Output when	Error Flags Set
Message Structure:	6 Nibbles,	Angle and Diagnostics	~	Output Drive:	Open Drain	
		e message status in CRC			Enable Fall Time Cor	ntrol
Analog Mapping:	No Analog	, Mapping	~	Fall Time:	0 - Fastest	
	Enable	Serial Message				
	Repea	t SENT Serial Message \$(01			
SENT Serial Messag	e Enables —					
\$01	\$06	\$09	\$29	\$2C	\$92	\$95
\$03	\$07	\$0A	\$2A	\$90	\$93	\$96
\$05	\$08	\$23	\$2B	\$91	\$94	\$97
SENT Output						
Message	Serial Data					
Load from File	Read From	n Device			Write to Device	Save to File

Figure 38: Output, SENT

Tick Time Pull Down Menu

Sets the length of one tick of the SENT Message tick.

Output Rate Pull Down Menu

This chooses from a variable output rate to one fixed by the tick time.

 \sim

 \sim

Message Structure Pull Down Menu

Selects the number of nibbles and what data is contained in the SENT Message

Include message status in CRC Check Box

When checked, the message status nibble will be included in the CRC calculations.

Analog Mapping Pull Down Menu

Selects if the data will be analog mapped and which initialization values to use.

Enable Serial Message Check Box

When checked, the message status nibble will contain the Slow Serial Message bits.

Repeat SENT Serial Message \$01 Check Box

When checked, the slow serial message will interleave message \$01 with the other selected messages.

SENT Serial Message Enables Check Box

When checked, the slow serial message will include the selected messages.

Updates to Clear Error Pull Down Menu

This is how many times the sensor has to update before the error flags are cleared.

Tristate Output when Error Flags Set Check Box

When checked, the output will be disabled when the error flags are set.

Output Drive Pull Down Menu

Selects the driver used by the device. The choices are:

- Open Drain
- Push-Pull

Enable Fall Time Control Check Box

When checked, the fall time control is enabled.

Fall Time Pull Down Menu

The range is from 0, the shortest to 7 to the longest.

SENT Output Text Box Displays the received SENT data.

Message Button Reads the SENT Message from the Output pin.

Serial Data Button

Reads the Serial Data from 18 or more SENT Messages from the Output pin.

File Formats

Memory

CSV or Comma Separated Value files use the file extension ".csv". Lines can be blank or if they start with a # then they are comments.

Each set of parameters will start with the group name. The only group name used for the A31315 is "EEPROM. The parameters are one per line with the name of the parameter, a comma, and then the value of the parameter.

Text files use the file extension ".txt" and are the same as csv files except instead of commas the parameter name and value are separated by an equal sign.

Example of CSV file

this is a comment line EEPROM, qo_c,-246 sens_c,2 pol_c,0 out_msg_imm,0 dev_lock,0

Example of Text file

this is a comment line EEPROM qo_c=-246 sens_c=2 pol_c=0 out_msg_imm=0 dev_lock=0

from the menu.

Angles

CSV or Comma Separated Value files use the file extension ".csv". Lines can be blank or if they start with a # then they are comments. If the comment is "# Die 1" then all following angle pairs will be inserted into the Die 1 table, if the comment is "# Die 2" then all of the following angle pairs will be inserted into the Die 2 table, if the linearization mode is variable linearization then if the comment is "# Position 1" then all of the following angles will be inserted into the Die 1 Position table and if the comment is "# Position 2" then all of the following angles will be inserted into the Die 2 Position table. If there are no comments, then the angles will be inserted into the table for the die selected by the die selection popup menu or if a single die device, then the die 1 table.

Example of CSV file

Ŧ		D	i	е		1					
0	,		0								
3	6	,		3	6		0	0	8		
6	8	,		5	7		5	0	8		
1	0	0	,		7	9		6	2	3	
1	3	2	,		1	0	3		3	7	0
1	6	4			1	2	9		5	5	1
1	9	6			1	5	9		2	5	8
2	2	8			1	9	3		3	5	4
2	6	0			2	3	2		8	9	4
2	9	2	<i>.</i>		2	7	6	Ī	8	1	2
3	2	4	'		3	2	3	•	5	8	6
5	2	1	'		9	2	9	•	5	0	0
#		D	i	e		2					
# 3	2	D 4	i	е	3	2 2	3	_	5	8	6
# 3 2	29	D 4 2	i ,	e	3 2	2 2 7	36	•	5 8	8 1	6 2
# 3 2 2	2 9 6	D 4 2 0	i , ,	е	3 2 2	2 2 7 3	3 6 2	•	5 8 8	8 1 9	6 2 4
#3222	2 9 6 2	D 4 2 0 8	i , ,	е	3 2 2 1	2 2 7 3 9	3 6 2 3	•	5 8 8 3	8 1 9 5	6 2 4 4
# 3 2 2 1	2 9 6 2 9	D 4 2 0 8 6	i , , ,	e	3 2 2 1	2 2 7 3 9 5	36239	•	5 8 8 3 2	8 1 9 5 5	6 2 4 4 8
#322211	296296	D 4 2 0 8 6 4	i ,,,,,	e	3 2 1 1	2 2 7 3 9 5 2	362399		5 8 8 3 2 5	8 1 9 5 5 5	6 2 4 4 8
#3222111	2962963	D4208642	i ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	e	3 2 2 1 1 1	2 2 7 3 9 5 2 0	3623993	• • •	5 8 8 3 2 5 3	8 1 9 5 5 7	6 2 4 8 1
#32221111	29629630	D42086420	i , , , , , , , , , , , , , , , , , , ,	e	322111 17	2 2 7 3 9 5 2 0 9	3623993	•••••	58832532	81955573	6 2 4 4 8 1 0
#322211116	296296308	D42086420	i , , , , , , , , ,	е	322111177	227395209	3623993.5	•••••	588325328	8 1 9 5 5 7 3	6 2 4 4 8 1 0
#3222111162	2962963086	D42086420	i , , , , , , , ,	e 5 2	3221111776	2 2 7 3 9 5 2 0 9 ·	3623993.50	•••••	5883253280	81955573	6 2 4 4 8 1 0
#32221111630	2962963086	D42086420,,	i,,,,,,	e 53	3221111776	227395209・・	3623993.50	· · · · · 600	5883253288	81955573	6 2 4 8 1 0

Scripting the Application

Scripting in C#

To create a script using C# that runs in the Allegro A31315 Samples programmer, use this template:

```
using System;
using Allegro.Script;
namespace ScriptTemplate
{
    public class ScriptTemplate: IScriptSource
    {
      public int ScriptType()
       {
             return 0;
       }
      public string ScriptName()
       {
             return "ScriptTemplate";
       }
       public string RunScript(IScriptPerformer performer)
       {
             return "This script does nothing";
       }
    }
```


}

The return value of the script type is not used at the present time so leave it alone. The script name should match the name of the file without the extension and can include spaces. RunScript is the method that will be executed when the script is run. The performer parameter is the scripts access to the application. The full C# language and all of the .net libraries are available for use in the scripting language.

IScriptPerformer Methods

SetScriptVariable

Set a string into the script variable dictionary with the given name.

void SetScriptVariable(string name, string value);

GetScriptVariable

Get a name string from the script variable dictionary. If the name is not in the dictionary a null is returned. The only predefined string is "scripting_path" which is how the script can set which file to be used instead of opening the file load or save dialogs and asking the user.

bool GetScriptVariable(string name, out string value);

SetScriptObject

Set an object into the script object dictionary with the given name.

void SetScriptObject(string name, object value);

GetScriptObject

Get a name object from the script object dictionary. If the name is not in the dictionary a null is returned. Currently the only predefined object is "ASEK" which is the ASEK programmer the application is currently using.

```
object GetScriptObject(string name);
```

Perform Action

This method performs the equivalent of a mouse click on an action keyword. There are action keywords for each of the buttons in the user interface.

bool PerformAction(string action);

PerformParameterAction

Perform parameter action will set or reset the select checkbox in the memory grid.

```
bool PerformParameterAction(string parameter, string action);
```

SetValue

Set the value of the given item.

bool SetValue(string target, string value);

SetParameterValue

Set the value of the given parameter.

bool SetParameterValue(string parameter, string parameterType, string value);

GetValue

Get the value of the given item.

string GetValue(string target);

GetDoubleValue

Get the value of the given item and try to convert it into a double.

double GetDoubleValue(string target);

GetIntegerValue

Get the value of the given item and try to convert it into an integer.

int GetIntegerValue(string target);

GetParameterValue

Gets the string value of the given parameter.

string GetParameterValue(string parameter, string parameterType);

GetDoubleParameterValue

Gets the double value of the given parameter.

double GetDoubleParameterValue(string parameter, string parameterType);

GetIntegerParameterValue

Gets the integer value of the given parameter.

int GetIntegerParameterValue(string parameter, string parameterType);

Example

```
using System;
using Allegro.ASEK;
using Allegro.Script;
namespace VerifyOperational
{
    public class VerifyOperational : IScriptSource
    {
        public int ScriptType()
        {
            return 0;
        }
        public string ScriptName()
        {
            return "VerifyOperational";
        }
```


Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

public string RunScript(IScriptPerformer performer) { ASEK asek = (ASEK) performer.GetScriptObject("ASEK"); if (asek == null) { return "Communication not initialized."; } // Check to see if the ASEK is available to program with. if (!asek.IsActive()) { return "Unable to verify the ASEK is connected and powered on. Make sure it is connected and powered on."; } // Make sure the test starts in a known point, power off. if (!performer.PerformAction("PowerOff")) { return "Unable to perform the power off action. The ASEK is not responding to commands. Could be a bad ASEK."; } // Make sure the voltage supply is really off if (performer.GetDoubleValue("Vcc") > 0.1) { return "Unable to verify that the supply voltage is off. Could be a bad ASEK."; // Power up the device. if (!performer.PerformAction("PowerOn")) { return "Unable to perform the power on action. Could be a bad ASEK."; } // Make sure the supply is close to the desired voltage. double desiredVoltage = performer.GetDoubleValue("VoltageSupply"); double voltageReading = performer.GetDoubleValue("Vcc"); if ((voltageReading < (desiredVoltage - 0.1)) || (voltageReading > (desiredVoltage + 0.1))) { return string.Format("The supply voltage is not close to the desired voltage. Could be a bad ASEK. desired={0}, supply={1}", desiredVoltage, voltageReading); // Write to a scratch register to check to see if the device is present and operational int readResults; Random randObj = new Random(); int data = randObj.Next(0x0FFFFFF); try { ((IRegisterAccess)asek).WriteRegister(MemoryAccessType.primary, 0x01,

```
(uint)data);
```

} catch


```
{
                          return "Error while writing to the A31315, verify that
there is an A31315 in the socket.\r\nIf there is one then it could be a bad A31315 or
a different device.";
                    }
                    // Read the scratch register
                    try
                    {
                readResults =
(int) ((IRegisterAccess) asek).ReadRegister(MemoryAccessType.primary, 0x01);
                    }
                    catch
                    {
                           return "Error while reading from the device, could be a bad
A31315 or a different device.";
                    }
                    // Check to make sure the number that was written is the same as
what was read.
                    if (data != readResults)
                    {
                           return string.Format("Data read from the A31315 does not
match what was written, bad device. written={0}, read={1}", data, readResults);
                    }
            return "The set-up is operational.";
       }
    }
}
```

Scripting in Visual Basic

To create a script using Visual Basic that runs in the Allegro A31315 Samples programmer, use this template:

```
Imports System
Imports Allegro.Script
Public Class ScriptTemplate
Implements IScriptSource
Public Function ScriptType() As Integer Implements IScriptSource.ScriptType
Return 0
End Function
Public Function ScriptName() As String Implements IScriptSource.ScriptName
Return " ScriptTemplate "
End Function
Public Function RunScript(performer As IScriptPerformer ) As String Implements
IScriptSource.RunScript
Return "The script is done."
End Function
End Function
```

The return value of the script type is not used at the present time so leave it alone. The script name should match the name of the file without the extension and can include spaces. Run script is the method that will be executed when the script is run. The performer parameter is the scripts access to

the application. The full visual basic language and all of the .net libraries are available for use in the scripting language.

IScriptPerformer Methods

SetScriptVariable

Set a string into the script variable dictionary with the given name.

void SetScriptVariable(string name, string value);

GetScriptVariable

Get a name string from the script variable dictionary. If the name is not in the dictionary a null is returned. The only predefined string is "scripting_path" which is how the script can set which file to be used instead of opening the file load or save dialogs and asking the user.

bool GetScriptVariable(string name, out string value);

SetScriptObject

Set an object into the script object dictionary with the given name.

void SetScriptObject(string name, object value);

GetScriptObject

Get a name object from the script object dictionary. If the name is not in the dictionary a null is returned. Currently the only predefined object is "ASEK" which is the ASEK programmer the application is currently using.

object GetScriptObject(string name);

Perform Action

This method performs the equivalent of a mouse click on an action keyword. There are action keywords for each of the buttons in the user interface.

```
bool PerformAction(string action);
```

PerformParameterAction

Perform parameter action will set or reset the select checkbox in the memory grid.

bool PerformParameterAction(string parameter, string action);

SetValue

Set the value of the given item.

bool SetValue(string target, string value);

SetParameterValue

Set the value of the given parameter.

bool SetParameterValue(string parameter, string parameterType, string value);

GetValue

Get the value of the given item.

string GetValue(string target);

GetDoubleValue

Get the value of the given item and try to convert it into a double.

```
double GetDoubleValue(string target);
```

GetIntegerValue

Get the value of the given item and try to convert it into an integer.

```
int GetIntegerValue(string target);
```

GetParameterValue

Gets the string value of the given parameter.

string GetParameterValue(string parameter, string parameterType);

GetDoubleParameterValue

Gets the double value of the given parameter.

double GetDoubleParameterValue(string parameter, string parameterType);

GetIntegerParameterValue

Gets the integer value of the given parameter.

int GetIntegerParameterValue(string parameter, string parameterType);

Example

```
Public Function RunScript(performer As IScriptPerformer) As String Implements
IScriptSource.RunScript
Dim asek As ASEK = DirectCast(performer.GetScriptObject("ASEK"), ASEK)
Dim reg As IRegisterAccess = DirectCast(performer.GetScriptObject("ASEK"),
```

```
IRegisterAccess)
```

If asek = null Then


```
Return "Communication not initialized."
        End If
        ' Check to see if the ASEK05 is available to program with.
        If asek.IsActive() = False Then
            Return "Unable to verify the ASEK is connected and powered on. Make sure it
is on the local network, connected it and powered on."
        End If
        ' Make sure the test starts in a known point, power off.
        If performer.PerformAction("PowerOff") = False Then
            Return "Unable to perform the power off action. The ASEK is not responding to
commands. Could be a bad ASEK."
        End If
        ' Make sure the voltage supply is really off
        if performer.GetDoubleValue("voltage supply reading") > 0.1 Then
            Return "Unable to verify that the supply voltage is off. Could be a bad
ASEK."
        End If
        ' Power up the device.
        If performer.PerformAction("PowerOn") = False Then
            Return "Unable to perform the power on action. Could be a bad ASEK."
        End If
        ' Make sure the supply is close to the desired voltage.
        Dim desiredVoltage As Double = performer.GetDoubleValue("VoltageSupply")
        Dim voltageReading As Double = performer.GetDoubleValue("Vcc")
        If ((voltageReading < (desiredVoltage - 0.1)) Or (voltageReading >
(desiredVoltage + 0.1))) Then
            Return String.Format("The supply voltage is not close to the desired voltage.
Could be a bad ASEK. desired={0}, supply={1}", desiredVoltage, voltageReading)
        End If
        ' Write to a scratch register to check to see if the device is present and
operational
        Dim readResults As UInteger
        Dim address As UInteger = 4
        Dim randObj As Random = New Random()
        Dim data As UInteger = randObj.Next(&HFFF)
        Try
            reg.WriteRegister(MemoryAccessType.primary, 1, data)
        Catch ex As Exception
            Return "Error while writing to the A31315, verify that there is an A31315 in
the socket.\r\nIf there is one then it could be a bad A31315 or a different device."
        End Try
        ' Read the scratch register
        Try
            readResults = reg.ReadRegister(MemoryAccessType.primary, 1)
        Catch ex As Exception
            Return "Error while reading from the device, could be a bad A31315 or a
different device."
        End Try
```


Keywords

Action Keywords

LoadMemoryFile

Load the memory grid from a file. If the script variable "scripting_path" is set, it is used instead of opening up a file browser and asking the user where the file is.

SaveMemoryFile

Save the selected parameters in the memory grid to a file. If the script variable "scripting_path" is set, it is used instead of opening up a file browser and asking the user where the file is.

PowerOn

Set the voltage supplied to the device to the value contained in VoltageSupply then turn the supply on.

PowerOff

Turn the power off for the device.

SelectAllEEPROM

Selects all the parameters. Note: It will select both the memory locations and the fields.

DeselectAllEEPROM Deselects all the parameters.

ZeroSelectedEEPROM Replaces the values associated with the selected parameters with zeros.

ClearSelectedEEPROM Removes the values associated with the selected parameters.

ReadSelectedEEPROM Reads all the selected parameters to the A31315.

WriteSelectedEEPROM

Writes all the selected parameters to the A31315. They can be a mix of memory locations and fields.

74

VerifySelectedEEPROM

Reads the selected parameters from the A31315 and makes sure they are the same as what is displayed in the Memory table.

LoadEEPROMFile

Load the fields and/or memory locations from a text or csv file and select the fields and memory locations that were loaded. If the scripting variable "scripting_path" is set, this path will be used instead of opening a file browser and asking the user for the file.

SaveEEPROMFile

Save the selected fields and/or memory locations to a text or csv. If the scripting variable "scripting_path" is set, this path will be used instead of opening a file browser and asking the user for the file.

SelectAllShadow

Selects all the parameters. Note: It will select both the memory locations and the fields.

DeselectAllShadow Deselects all the parameters.

ZeroSelectedShadow Replaces the values associated with the selected parameters with zeros.

ClearSelectedShadow

Removes the values associated with the selected parameters.

ReadSelectedShadow

Reads all the selected parameters to the A31315.

WriteSelectedShadow

Writes all the selected parameters to the A31315. They can be a mix of memory locations and fields.

VerifySelectedShadow

Reads the selected parameters from the A31315 and makes sure they are the same as what is displayed in the Memory table.

SelectAllVolatile Selects all the parameters. Note: It will select both the memory locations and the fields.

DeselectAllVolatile Deselects all the parameters.

ZeroSelectedVolatile

Replaces the values associated with the selected parameters with zeros.

ClearSelectedVolatile

Removes the values associated with the selected parameters.

ReadSelectedVolatile

Reads all the selected parameters to the A31315.

WriteSelectedVolatile

Writes all the selected parameters to the A31315. They can be a mix of memory locations and fields.

VerifySelectedVolatile

Reads the selected parameters from the A31315 and makes sure they are the same as what is displayed in the Memory table.

Value Keywords

VoltageSupply

This is the desired voltage supply in volts. It will be used when the power is turned on.

Vcc

Vcc is the voltage that is currently being supplied to the device in volts. (Read Only)

Icc

Icc is the current that is currently being supplied to the device in milliamps. (Read Only)

ShowVolatileViewAs

Selects if the fields or memory locations will be displayed. Possible values are "All Memory Locations" and "All Fields".

ShowEEPROMViewAs

Selects if the fields or memory locations will be displayed. Possible values are "All Memory Locations", "All Fields", "Short Stroke Fields", "Linearization Fields".

ShowShadowViewAs

Selects if the fields or memory locations will be displayed. Possible values are "All Memory Locations" and "All Fields".

EnableTPPDiagnostics Enable the Two Point Programming Diagnostics.

TPPDiagnosticsFile The value is the path and name of the file the Two Point Programming Diagnostics file will be saved in.

Selected

Returns the number of parameters selected in the memory grid.

Parameters

The parameters are identified by the parameter name, a @ then the group name. For example, to specify the pwm mode field in the EEPROM the string would be "PWM_MODE@ EEPROM"

EEPROM

eeprom 5 be miller en channel_hyst_c_a channel hyst c b dig opendr e init ana out burn_in_test_en eeprom 16 pre_sat_en pre sat lo pre_sat_hi eeprom_17 offs c a pol_c_a eeprom_18 offstc1_cld_c_a offstc1 hot c a eeprom 19 sens c a eeprom_1a senstc1_cld_c_a senstc1_hot_c_a eeprom_1b senstc2 cld c a senstc2 hot c a eeprom 1c offs_c_b pol c b eeprom 1d offstc1_cld_c_b offstc1_hot_c_b eeprom_1e sens c b eeprom_1f senstc1 cld c b senstc1 hot c b eeprom 20 senstc2 cld c b senstc2_hot_c_b toff c eeprom_21

lin enable lin mode lin_coeff_scalar lin coeff active ee cust spares 1 lin coeff 00 eeprom 22 lin coeff 01 lin coeff 02 eeprom 23 lin coeff 03 lin_coeff_04 eeprom 24 lin coeff 05 lin coeff 06 eeprom 25 lin coeff 07 lin coeff 08 eeprom 26 lin_coeff_09 lin_coeff_10 eeprom 27 lin_coeff_11 lin coeff 12 eeprom 28 lin_coeff 13 lin coeff 14 eeprom 29 lin coeff 15 lin coeff 16 eeprom_2a lin_coeff_17 lin coeff 18 eeprom 2b lin coeff 19 lin coeff 20 eeprom 2c lin coeff 21 lin coeff 22 eeprom 2d

lin_coeff_23

lin coeff 24 eeprom 2e lin coeff 25 lin coeff 26 eeprom 2f lin coeff 27 lin_coeff 28 eeprom 30 lin coeff 29 lin coeff 30 eeprom 31 lin_coeff_31 lin coeff 32 eeprom 32 cordic pol cordic chan sel byp cordic pre_gain_offset eeprom 33 angle_gain bin_hyst eeprom 34 post_gain_offset_s at post gain offset post gain sat post_gain_sat_val eeprom 35 mag_thresh_min_e n mag_thresh_min mag_thresh_max_e n mag_thresh_max eeprom 36 lower clamp eeprom 37 upper clamp bw_sel_filter bw adap min bw_adap_max

eeprom 38 gain_frac gain_exp dly fall por_iir_byp_config eeprom 39 digital_output_mod е device id sent data cfg sent_ticks_clk_num _pwm_period sent drive sent_ftc_e_n sent_no_msg scn_crc_en sent_data_analog_ map sent init code ana log_map eeprom_3a sent_emsg_enable sent_emsg_1_repe at eeprom 3b acf mask aoc mask tse mask sat mask ofe_mask slf_mask srr_mask por_mask ese_mask spe mask uvcc mask ovcc mask fault filt vcf fault filt sat_lin_mask sat_cor_mask

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com ee_cust_spares_2
make_factory_writ
able_c
eeprom_3c
sdata_i_lo_thr
sdata_i_hi_thr

shadow

shadow 5 be miller en channel_hyst_c_a channel_hyst_c_b dig_opendr_e init ana out burn_in_test_en shadow_16 pre sat en pre_sat_lo pre sat hi shadow 17 offs c a pol_c_a shadow 18 offstc1_cld_c_a offstc1_hot_c_a shadow 19 sens_c_a shadow 1a senstc1 cld c a senstc1 hot c a shadow 1b senstc2 cld c a senstc2_hot_c_a shadow_1c offs_c_b pol_c_b shadow 1d offstc1 cld c b offstc1 hot c b shadow 1e sens_c_b shadow 1f senstc1_cld_c_b senstc1_hot_c_b shadow_20

analog_lock err_min out_err_resp_conf dig_out_err_resp_c onf be_bw_sel

senstc2 cld c b senstc2_hot_c_b toff c shadow 21 lin enable lin mode lin coeff scalar lin coeff active ee_cust_spares_1 lin coeff 00 shadow 22 lin coeff 01 lin_coeff_02 shadow 23 lin coeff 03 lin_coeff_04 shadow 24 lin coeff 05 lin coeff 06 shadow 25 lin coeff 07 lin coeff 08 shadow 26 lin coeff 09 lin_coeff_10 shadow 27 lin_coeff_11 lin coeff 12 shadow 28 lin coeff 13 lin coeff 14 shadow 29 lin coeff 15 lin_coeff_16 shadow 2a lin_coeff_17 lin coeff 18 shadow 2b lin coeff 19

be scale ee_cust_spares_0 vcc_uv_thresh vcc_ov_thresh block volatile outp ut lin coeff 20 shadow 2c lin coeff 21 lin coeff 22 shadow 2d lin coeff 23 lin coeff 24 shadow 2e lin_coeff_25 lin coeff 26 shadow 2f lin coeff 27 lin_coeff_28 shadow 30 lin coeff 29 lin coeff 30 shadow 31 lin coeff 31 lin coeff 32 shadow 32 cordic pol cordic chan sel byp cordic pre_gain_offset shadow_33 angle gain bin_hyst shadow 34 post_gain_offset_s at post_gain_offset post gain sat post_gain_sat_val shadow_35 mag_thresh_min_e mag thresh min mag thresh max e n

manch_trigger_dis mem_lock unlock_code

mag_thresh_max shadow 36 lower clamp shadow 37 upper clamp bw_sel_filter bw adap min bw adap max shadow_38 gain frac gain exp dly fall por_iir_byp_config shadow 39 digital output mod e device id sent_data_cfg sent ticks clk num _pwm_period sent drive sent_ftc_e_n sent_no_msg scn_crc_en sent_data_analog_ map sent_init_code_ana log map shadow 3A sent emsg enable sent_emsg_1_repe at shadow 3b acf_mask aoc_mask tse_mask sat mask ofe mask slf mask

Allegro MicroSystems 955 Perimeter Road Manchester, New Hampshire U.S.A. 1.603.626.2300; www.allegromicro.com

srr_mask	sat_lin_mask	analog_lock
por_mask	sat_cor_mask	err_min
ese_mask	ee_cust_spares_2	out_err_resp_conf
spe_mask	make_factory_writ	dig_out_err_resp_c
uvcc_mask	able_c	onf
ovcc_mask	shadow_3c	be_bw_sel
fault_filt	sdata_i_lo_thr	be_scale
vcf_fault_filt	sdata_i_hi_thr	ee_cust_spares_0
	status	ctrl
volatile	rdy	srst
ee_marg_tst	ardy	error
margin_start	crdy	acf
margin_no_max	spe_addr	аос
margin_no_min	vc_vcc_uv	tse
margin_status	vc_vcc_ov	sat
margin_min_max_f	vc_vcc_hv	slf
ail	sat_cor	srr
ee_use_test_addr	sat_lin	por
ee_test_addr	sat_filt	ese
ee_loop	vcf	uvcc
test	hall_hdrm_chan_a_	ovcc
bist_done	fault	eue
lbist_pass1_fail0	hall_hdrm_chan_b_	spe
access	fault	ofe
customer_access	ov_flag_pre	emsg_error
customer_eeprom_	ov_flag_off	acf_emsg
lock_wr	ov_flag_gain	aoc_emsg
customer_eeprom_	diag_clk_cnt	tse_emsg
lock_rd	cust_vol_0	sat_emsg
customer_register_	lbist_cust_trigger	slf_emsg
lock_wr	manch_comm_e	srr_emsg
customer_register_	calc_lbist_sign	por_emsg
lock_rd	lbist_calc_misr_fina	ese_emsg
access_key	I	uvcc_emsg

vcc_uv_thresh vcc_ov_thresh block_volatile_outp ut manch_trigger_dis mem_lock unlock_code ovcc_emsg diag_error acf_diag aoc_diag tse_diag sat_diag slf_diag srr_diag por_diag ese_diag uvcc_diag ovcc_diag snap_err snapshot_err angle angle_out_16b temp_out_16b chan_a fe_channel_a fe_channel_b mag_a_b mag_out_a_c mag_out_b_c rad_sq radius_out_sq

79