

EVB111-10A Evaluation Board User Guide

DESCRIPTION

The EVB111 evaluation board is designed to demonstrate the current sensing capabilities of the CT110 linear magnetic sensor from Allegro MicroSystems. The CT110 is a current sensor based on XtremeSenseTM TMR Technology. It features a full-bridge configuration comprised of four TMR elements monolithically integrated with active CMOS circuitry, allowing it to have high resolution and low noise in a small package footprint. This user guide describes how to connect and use the EVB111-10A evaluation board.

FEATURES

- Current Range: $+10 A_{DC} / \pm 10 A_{PK}$
- Gain: 30.0 mV/V/A to 88.2 mV/V/A
- 2 kV_{RMS} Galvanic Isolation
- 2.7 V to 5.0 V Tolerance

Figure 1: EVB111-10A Evaluation Board

Table of Contents

Description	
Features	1
Using the Evaluation Board	2
Power Input	2
Board Configuration	2
Schematic	
Layout	4
Bill of Materials	5
Related Links	6
Revision History	7

Table 1: EVB111-10A Evaluation Board Configurations

Configuration Name	Part Number	Output Current (A)
EVB111-10A	CT110PDC-ID6	10

Table 2: General Specifications

Specification	Min.	Тур.	Max	Units
Input Operating Voltage	2.7	_	5.0	V
Input Operating Current	-10.0	_	10.0	Α
Cutoff Frequency (3 dB)	_	10	_	kHz

USING THE EVALUATION BOARD

This section provides an overview of the connections and configuration options of the EVB111-10A evaluation board. Each group of connections highlighted in Figure 2 has a detail section below. The EVB111-10A datasheet contains detailed information on the use and functionality of each pin. Consult the datasheet for more detailed information than is contained in this user guide.

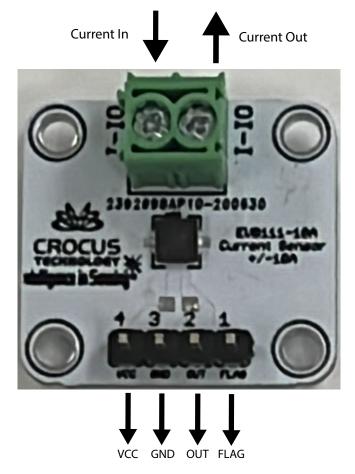


Figure 2: EVB111-10A evaluation board connections

Power Input

Connect a power supply to VCC and GND. Current that does not exceed $10\,A_{DC}$ can be applied to the terminal block and measured. It is best to use short cables that are at least $18\,AWG$.

Board Configuration

The two-connector terminal block connects and drives the external current to be measured. Do not exceed $10 \, A_{DC}$.

Use the 5-pin male header on the PCB to bias the IC and measure the output. Apply the bias voltage between the VCC and GND pins to power the PCB. The voltage at the OUT pin is proportional to the current flowing through the EVB. The output on the FLAG pin changes state when the current exceeds the maximum rated current of the device.

The EVB111-10A also has an RC low pass filter on the PCB with a 3 dB cutoff frequency of 10 kHz, and the filtered signal voltage can be accessed from the FILT pin of the PCB.

SCHEMATIC

Figure 3 shows the schematic of the EVB111-10A evaluation board.

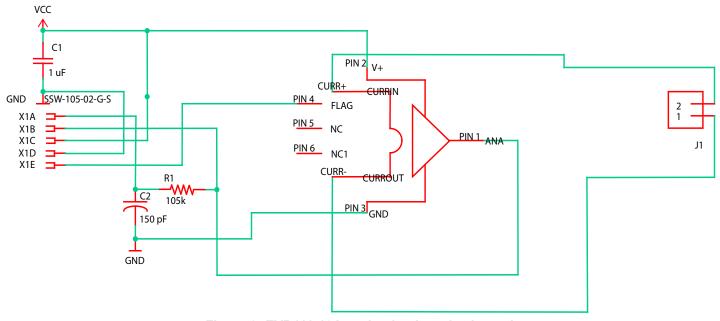


Figure 3: EVB111-10A evaluation board schematic

LAYOUT

Figures 4 and 5 show the top and bottom layers of the EVB111-10A evaluation board.

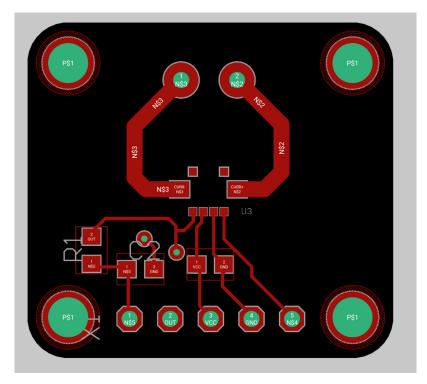


Figure 4: EVB111-10A evaluation board top layer

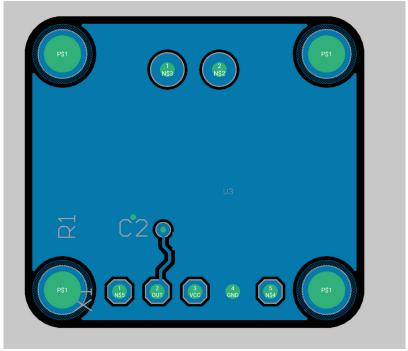


Figure 5: EVB111-10A evaluation board bottom layer

BILL OF MATERIALS

Table 3: CT110PDC-ID6 Evaluation Board Bill of Materials

ELECTRICAL COMPONENTS				
Designator	Quantity	Description	Manufacturer	Manufacturer Part Number
PCB	1	EVB111-10A EVAL PCB	Allegro MicroSystems	_
U1	1	CT110 Sensor	Allegro MicroSystems	_
C1	1	Capacitor, monolithic, 1.0 µF, X7R, 0603	Yageo	CC0603KRX7R7BB105
C2	1	Capacitor, monolithic, 100 µF, X7R, 50 V, 0603	AVX	06035C104K4T2A
R1	1	Jumper, 0Ω jumper, 0603	Yageo	RC0603JR-070RL
J1	1	Terminal block, 2 position, side entry, 5mm	TE	282836-2
JP1	1	Male jumper, 5 pin, gold plating	AMP	9-146277-0-05

REL	ATED	LINKS

 $\underline{https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/ct110}$

Revision History

Number	Date	Description	
_	September 27, 2024	Initial release	

Copyright 2024, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

