

# Integrated Omnipolar TMR Analog Sensor

### FEATURES AND BENEFITS

- Sensitivity and magnetic field range:  $\Box$  S = 5 mV/V/G, B<sub>ANA</sub> = ±80 G
- Analog output mode current consumption: ~1.3 μA □ Current consumption in digital output only: ~150 nA
- (a)  $V_{DD} = 1.8 \text{ V}$  and  $f_S = 12.5 \text{ Hz}$ Supply voltage range: 1.7 to 5.5 V
- Sensor polarity: omnipolar
- Sample and hold analog output (a)  $f_s = 100 \text{ Hz}$
- Dual analog and digital output operation capability □ Digital output is push-pull
- Undervoltage lockout (UVLO)

# APPLICATIONS

- IoT devices
- Smartphones, tablets, and laptops
- Door or lid closure
- Tamper-proofing for utility smart meters
- Fluid level sensing/detection
- Proximity detection .
- Motor controllers
- Gimbals for camera systems in drones/UAVs
- Industrial machinery/robots
- Medical devices

### PACKAGES:



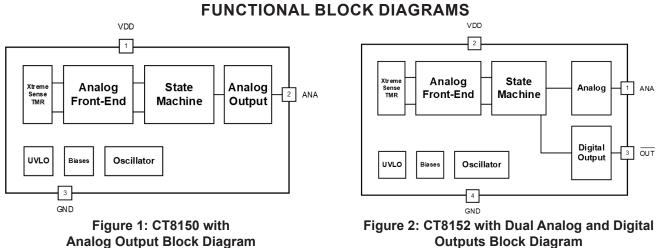


3-lead SOT-23

5-lead SOT-23

Not to scale. 4-lead LGA package not shown.

# DESCRIPTION


The CT815x series of tunnel magnetoresistance (TMR) analog sensors (with option for digital latch output) are designed for consumer and industrial applications. The devices are based on Allegro patented XtremeSense<sup>™</sup> TMR technology with integrated CMOS process to provide a monolithic solution for superior sensing performance. The CT815x digital latches offer magnetic operation over the operating temperature range.

The CT815x is an analog sensor product family that provides a linear sample-and-hold (S&H) analog output voltage with a sampling frequency of 100 Hz.

The CT8152 is a TMR sensor that combines both analog and digital outputs in a single chip. It uses the digital output to turn on the analog output so that it can remain in an ultra-low power state until the analog mode is enabled. When B<sub>RP</sub> is triggered in digital mode, the analog output function will start operating.

This product family has very low power consumption-as low as 1.3 µA in analog output mode and 150 nA in digital output mode-which makes it ideal for battery-operated products where minimal current consumption is required.

For applications that require a very small form factor and low profile, the CT815x sensors are assembled in a 4-lead LGA package. The CT8150 is also available in an industry-standard 3-lead SOT-23 package while CT8152 is offered in a 5-lead SOT23 package to support high-volume manufacturing.



# Integrated Omnipolar TMR Analog Sensor

### **Table of Contents**

| Features and Benefits              | . 1 |
|------------------------------------|-----|
| Description                        | . 1 |
| Applications                       | . 1 |
| Functional Block Diagrams          | . 1 |
| Selection Guide                    | . 2 |
| Absolute Maximum Ratings           | . 3 |
| Recommended Operating Conditions   | . 3 |
| Thermal Characteristics            | . 3 |
| Pinout Diagrams and Terminal Lists | . 4 |

| Electrical Characteristics                   | 5  |
|----------------------------------------------|----|
| Functional Description                       | 14 |
| Applications Information                     |    |
| XtremeSense TMR Current Sensor Location      | 17 |
| Package Outline Drawings                     |    |
| Tape and Reel Pocket Drawings and Dimensions | 21 |
| Package Information                          |    |
| Revision History                             |    |

#### **SELECTION GUIDE**

| Part Number  | Operating Temp.<br>Range (°C) | Sensor Type | Analog<br>Output | Digital Output<br>(B <sub>OP</sub> /B <sub>RP</sub> ) | S<br>(mV/V/G) | Range<br>(G) | Package      | Packing       |
|--------------|-------------------------------|-------------|------------------|-------------------------------------------------------|---------------|--------------|--------------|---------------|
| CT8150PC-IS3 | -40 to 85                     | Omnipolar   | Yes              | No                                                    | 5             | ±80          | 3-lead SOT23 | Tape and Reel |
| CT8150PC-HS3 | -40 to 125                    | Ommpoiai    | res              | INO                                                   | 5             | ±00          | 5-lead 50125 | Tape and Reel |
| CT8150PC-IL4 | -40 to 85                     | Ompipalar   | Yes              | No                                                    | 5             | ±80          | 4-lead LGA   | Tape and Reel |
| CT8150PC-HL4 | -40 to 125                    | Omnipolar   | Tes              | INO                                                   | 5             | 100          | 4-lead LGA   | Tape and Reel |
| CT8152PC-IS5 | -40 to 85                     | Omninglar   | Yes              | Yes                                                   | 5             | ±80          | 5-lead SOT23 | Topo and Dool |
| CT8152PC-HS5 | -40 to 125                    | Omnipolar   | res              | (60 G/40 G)                                           | Э             | TOU          | 5-lead 50125 | Tape and Reel |
| CT8152PC-IL4 | -40 to 85                     | Omninglar   | Yes              | Yes                                                   | 5             | 1 9 0        | 4-lead LGA   | Tana and Daal |
| CT8152PC-HL4 | -40 to 125                    | Omnipolar   | res              | (60 G/40 G)                                           | Э             | ±80          | 4-lead LGA   | Tape and Reel |



#### ABSOLUTE MAXIMUM RATINGS<sup>[1]</sup>

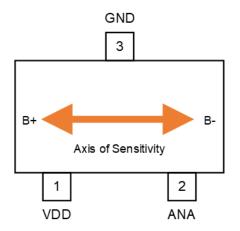
| Characteristic                           | Symbol                             | Notes                                      | Rating                                       | Unit |
|------------------------------------------|------------------------------------|--------------------------------------------|----------------------------------------------|------|
| Supply Voltage                           | V <sub>DD</sub>                    |                                            | -0.3 to 6.0                                  | V    |
| Push-Pull Output (Active Low)            | V <sub>OUT_PP</sub>                |                                            | -0.3 to V <sub>DD</sub> + 0.3 <sup>[2]</sup> | V    |
| Analog Input/Output Pins Maximum Voltage | V <sub>I/O</sub>                   |                                            | -0.3 to V <sub>DD</sub> + 0.3 <sup>[2]</sup> | V    |
| Input and Output Current                 | I <sub>IN</sub> , I <sub>OUT</sub> |                                            | ±20.0                                        | mA   |
| Analog Output                            | I <sub>ANA</sub>                   |                                            | ±140                                         | μA   |
| Maximum External Magnetic Field          | B <sub>MAX</sub>                   | $T_A = 25^{\circ}C$                        | ±2000                                        | G    |
| Electrostatic Discharge Dratestian Level | ESD                                | Human Body Model (HBM) per JESD22-A114     | ±4.0 (min)                                   | kV   |
| Electrostatic Discharge Protection Level | ESD                                | Charged Device Model (CDM) per JESD22-C101 | ±0.5 (min)                                   | kV   |
| Junction Temperature                     | TJ                                 |                                            | -40 to 150                                   | °C   |
| Storage Temperature                      | T <sub>STG</sub>                   |                                            | -65 to 155                                   | °C   |
| Lead Soldering Temperature               | TL                                 | 10 seconds                                 | 260                                          | °C   |

[1] Stresses exceeding the absolute maximum ratings may damage the CT815x and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Allegro does not recommend exceeding or designing to absolute maximum ratings

<sup>[2]</sup> The lower of  $V_{DD}$  + 0.3 V or 6.0 V.

#### **RECOMMENDED OPERATING CONDITIONS**<sup>[1]</sup>

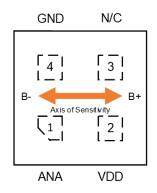
| Characteristic                 | Symbol           | Notes               | Min. | Тур. | Max.            | Unit |
|--------------------------------|------------------|---------------------|------|------|-----------------|------|
| Supply Voltage Range           | V <sub>DD</sub>  |                     | 1.7  | 3.3  | 5.5             | V    |
| Output Voltage Range           | V <sub>OUT</sub> |                     | 0    | -    | V <sub>DD</sub> | V    |
| Operating Magnetic Flux        | B <sub>OP</sub>  |                     | -    | _    | 300             | G    |
| Output Current                 | I <sub>OUT</sub> |                     | -    | _    | ±3.0            | mA   |
| Bypass Capacitor               | C <sub>BYP</sub> |                     | _    | 1.0  | -               | μF   |
| Operating Ambient Temperature  | т                | Industrial          | -40  | 25   | 85              | °C   |
| Operating Ambient Temperature  | T <sub>A</sub>   | Extended Industrial | -40  | 25   | 125             | °C   |
| Operating Junction Temperature | TJ               |                     | -40  | _    | 125             | °C   |

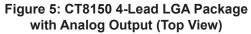

[1] The Recommended Operating Conditions table defines the conditions for actual operation of the CT815x. Recommended operating conditions are specified to ensure optimal performance to the specifications. Allegro does not recommend exceeding them or designing to absolute maximum ratings.

#### THERMAL CHARACTERISTICS

| Characteristic                      | Symbol           | Test Conditions                                                                                                                                                                                                                              | Value   | Unit |      |
|-------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|
| Junction-to-Ambient                 | R                | Junction-to-ambient thermal resistance is a function of application and board<br>layout and is determined in accordance to JEDEC standard JESD51 for a four<br>(4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu) and | SOT23-3 | 202  | °C/W |
| Thermal Resistance R <sub>0JA</sub> | <sup>™</sup> ⊕JA | 4 oz. of copper (Cu) or more for 65 A. Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature $T_A$ .                                                                                 | LGA-4   | 165  | °C/W |

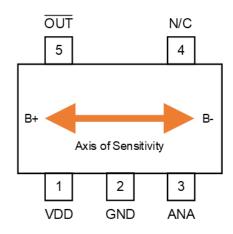



# **PINOUT DIAGRAMS AND TERMINAL LISTS**




### Figure 3: CT8150 3-Lead SOT23 Package for Analog Output

#### **Terminal List**


| Number | Name | Function       |
|--------|------|----------------|
| 1      | VDD  | Supply Voltage |
| 2      | ANA  | Analog Output  |
| 3      | GND  | Ground         |





### **Terminal List**

| Number | Name | Function       |
|--------|------|----------------|
| 1      | ANA  | Analog Output  |
| 2      | VDD  | Supply Voltage |
| 3      | NC   | No Connect     |
| 4      | GND  | Ground         |



### Figure 4: CT8152 5-Lead SOT23 Package for Analog Output

**Terminal List** 

| Number | Name | Function                   |
|--------|------|----------------------------|
| 1      | VDD  | Supply Voltage             |
| 2      | GND  | Ground                     |
| 3      | ANA  | Analog Output              |
| 4      | NC   | No Connect                 |
| 5      | OUT  | Output Signal (Active Low) |

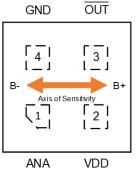



Figure 6: CT8152 4-Lead LGA Package with Analog and Digital Outputs (Top View)

### **Terminal List**

| Number | Name | Function                   |
|--------|------|----------------------------|
| 1      | ANA  | Analog Output              |
| 2      | VDD  | Supply Voltage             |
| 3      | OUT  | Output Signal (Active Low) |
| 4      | GND  | Ground                     |



# **ELECTRICAL CHARACTERISTICS:** Valid for V<sub>DD</sub> = 1.7 to 5.5 V, C<sub>BYP</sub> = 1.0 $\mu$ F, and T<sub>A</sub> = -40°C to 125°C, typical values are V<sub>DD</sub> = 3.3 V and T<sub>A</sub> = 25°C, unless otherwise specified

| Characteristics                        | Symbol              | Test Conditions         | Min. | Тур. | Max. | Unit |
|----------------------------------------|---------------------|-------------------------|------|------|------|------|
| TIMINGS                                |                     |                         |      |      |      |      |
| Power-On Time <sup>[1]</sup>           | t <sub>ON</sub>     | V <sub>DD</sub> ≥ 1.7 V | -    | 50   | 75   | μs   |
| Active Mode Time <sup>[1]</sup>        | t <sub>ACTIVE</sub> |                         | -    | 2.6  | -    | μs   |
| PROTECTION                             |                     |                         |      |      |      |      |
|                                        |                     | Rising V <sub>DD</sub>  | _    | 1.60 | 1.64 | V    |
| Undervoltage Lockout V <sub>UVLO</sub> |                     | Falling V <sub>DD</sub> | 1.44 | 1.53 | -    | V    |
| UVLO Hysteresis                        | V <sub>UV_HYS</sub> |                         | -    | 70   | _    | mV   |

<sup>[1]</sup> Guaranteed by design and characterization; not tested in production.

### **TYPICAL TIMING CHARACTERISTICS**

 $V_{DD}$  = 3.3 V,  $T_A$  = 25°C, and  $C_{BYP}$  = 1.0 µF (unless otherwise specified)

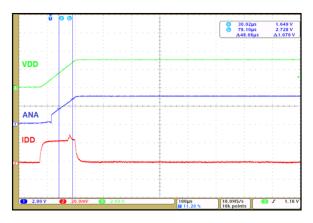
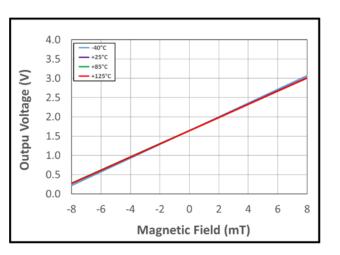


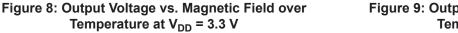

Figure 7: Power-On Time for Analog Output

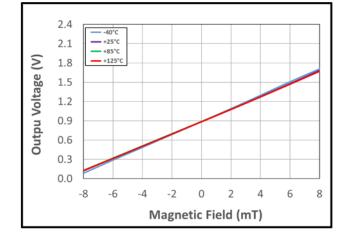


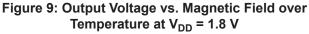

### CT8150PC - ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for

| $V_{DD}$ = 1.7 to 5.5 V, $C_{BYP}$ = 1.0 µF, | and $T_A = -40^{\circ}$ | C to 125°C, t | typical values are | e V <sub>DD</sub> = 3.3 V | / and T <sub>A</sub> = 2 | 25°C |
|----------------------------------------------|-------------------------|---------------|--------------------|---------------------------|--------------------------|------|
|                                              |                         |               |                    |                           |                          |      |

| Characteristics                         | Symbol                    | Test Conditions                      | Min.                  | Тур. | Max.                | Unit              |
|-----------------------------------------|---------------------------|--------------------------------------|-----------------------|------|---------------------|-------------------|
| Average Supply Current                  | I <sub>DD(AVG)</sub>      | t ≥ 10 seconds                       | -                     | 1.5  | 5.0                 | μA                |
|                                         | I <sub>DD(AVG)_1.8V</sub> | $t \ge 10$ seconds, $V_{DD} = 1.8$ V | -                     | 1.3  | 3.0                 | μA                |
| Sampling Frequency                      | f <sub>S</sub>            |                                      | 60                    | 100  | 140                 | Hz                |
| Idle Mode Time                          | t <sub>IDLE</sub>         | f <sub>S</sub> = 100 Hz              | 7.1                   | 10.0 | 16.7                | ms                |
| Maximum Drive Capability <sup>[1]</sup> | I <sub>DRV(MAX)</sub>     | $\Delta V_{OUT} \le 10 \text{ mV}$   | -10                   | _    | +10                 | μA                |
| Output Capacitive Load [1]              | CL                        |                                      | -                     | _    | 10                  | pF                |
| Analog Output Magnetic Field            | B <sub>ANA</sub>          |                                      | ±54                   | ±80  | ±100                | G                 |
| Analog Output Voltage Range             | V <sub>ANA</sub>          |                                      | 0.1 × V <sub>DD</sub> | _    | $0.9 \times V_{DD}$ | V                 |
| Voltage Output Quiescent                | V <sub>OQ</sub>           |                                      | 45                    | 50   | 55                  | % V <sub>DD</sub> |
| Sensitivity                             | S                         |                                      | 3.5                   | 5.0  | 6.5                 | mV/V/G            |


 $\ensuremath{^{[1]}}\xspace$  Guaranteed by design and characterization; not tested in production.






 $V_{DD}$  = 3.3 V, T<sub>A</sub> = 25°C, and C<sub>BYP</sub> = 1.0 µF (unless otherwise specified)







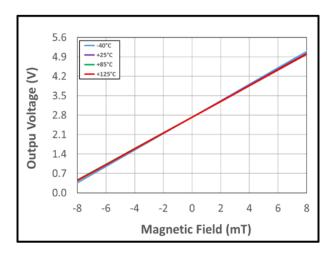
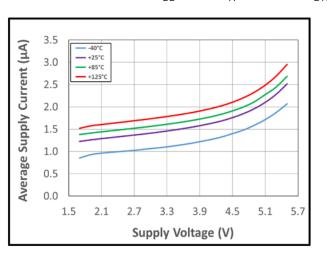




Figure 10: Output Voltage vs. Magnetic Field over Temperature at  $V_{DD}$  = 5.5 V





### **TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8150PC**

 $V_{DD}$  = 3.3 V, T<sub>A</sub> = 25°C, and C<sub>BYP</sub> = 1.0 µF (unless otherwise specified)

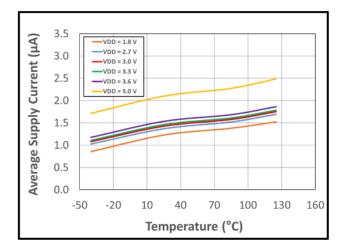



Figure 11: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 12: Average Supply Current vs. Temperature vs. Supply Voltage

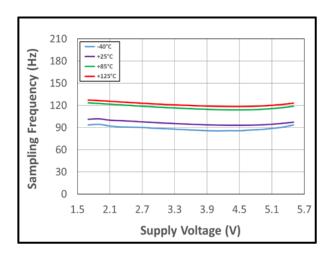



Figure 13: Sampling Frequency vs. Supply Voltage vs. Temperature



# Integrated Omnipolar TMR Analog Sensor

### CT8152PC - ELECTRICAL CHARACTERISTICS and MAGNETIC SPECIFICATIONS: Uness otherwise specified, valid for

 $V_{DD}$  = 1.7 to 5.5 V,  $C_{BYP}$  = 1.0 µF, and  $T_A$  = -40°C to 125°C, typical values are  $V_{DD}$  = 3.3 V and  $T_A$  = 25°C

| Characteristics                         | Symbol                    | Test Conditions                                                      | Min.                  | Тур. | Max.                  | Unit              |
|-----------------------------------------|---------------------------|----------------------------------------------------------------------|-----------------------|------|-----------------------|-------------------|
| ANALOG OUTPUT MODE (DIGIT               | AL MODE IS ON)            |                                                                      | ·                     |      |                       |                   |
|                                         | I <sub>DD(AVG)</sub>      | $t \ge 10$ seconds; analog and digital modes on                      | _                     | 1.5  | 5.0                   | μA                |
| Average Supply Current                  | I <sub>DD(AVG)_1.8V</sub> | t ≥ 10 seconds, V <sub>DD</sub> = 1.8 V; analog and digital modes on | -                     | 1.3  | 3.0                   | μA                |
| Maximum Drive Capability <sup>[1]</sup> | I <sub>DRV(MAX)</sub>     | $\Delta V_{OUT} \le 10 \text{ mV}$                                   | -10                   | _    | +10                   | μA                |
| Analog Sampling Frequency               | f <sub>S_ANA</sub>        |                                                                      | 60                    | 100  | 140                   | Hz                |
| Idle Mode Time, Analog Output           | t <sub>IDLE_ANA</sub>     | f <sub>S</sub> = 100 Hz                                              | 7.1                   | 10.0 | 16.7                  | ms                |
| Output Capacitive Load [1]              | CL                        |                                                                      | -                     | _    | 10                    | pF                |
| Analog Output Magnetic Field            | B <sub>ANA</sub>          |                                                                      | ±54                   | ±80  | ±100                  | G                 |
| Analog Output Voltage Range             | V <sub>ANA</sub>          |                                                                      | 0.1 × V <sub>DD</sub> | _    | 0.9 × V <sub>DD</sub> | V                 |
| Voltage Output Quiescent                | V <sub>OQ</sub>           |                                                                      | 45                    | 50   | 55                    | % V <sub>DD</sub> |
| Sensitivity                             | S                         |                                                                      | 3.5                   | 5.0  | 6.5                   | mV/V/mGT          |
| DIGITAL OUTPUT MODE                     |                           |                                                                      |                       |      |                       |                   |
| Average Supply Current                  | I <sub>DD(AVG)</sub>      | t ≥ 10 seconds; analog mode off                                      | -                     | 200  | 900                   | nA                |
| Average Supply Current                  | I <sub>DD(AVG)_1.8V</sub> | $t \ge 10$ seconds, $V_{DD} = 1.8$ V; analog mode off                | -                     | 150  | 700                   | nA                |
| Output Voltage High OUT [1]             | V <sub>OH</sub>           |                                                                      | $0.9 \times V_{DD}$   | _    | -                     | V                 |
| Output Voltage Low OUT <sup>[1]</sup>   | V <sub>OL</sub>           |                                                                      | -                     | _    | 0.1 × V <sub>DD</sub> | V                 |
| OUT Current <sup>[1]</sup>              | I <sub>OUT</sub>          |                                                                      | -                     | ±2.0 | -                     | mA                |
| Sampling Frequency                      | f <sub>S_DIG</sub>        |                                                                      | 7.5                   | 12.5 | 17.5                  | Hz                |
| Idle Mode Time                          | t <sub>IDLE_DIG</sub>     | f <sub>S</sub> = 2 Hz                                                | 57                    | 80   | 133                   | ms                |
| Operate Point, B+                       | B <sub>OPS</sub>          |                                                                      | 46                    | 60   | 76                    | G                 |
| Operate Point, B-                       | B <sub>OPN</sub>          |                                                                      | -76                   | -60  | -46                   | G                 |
| Release Point, B+                       | B <sub>RPS</sub>          |                                                                      | 28                    | 40   | 56                    | G                 |
| Release Point, B-                       | B <sub>RPN</sub>          |                                                                      | -56                   | -40  | -28                   | G                 |
| Hysteresis                              | B <sub>HYST</sub>         |                                                                      | 10                    | 20   | _                     | G                 |

<sup>[1]</sup> Guaranteed by design and characterization; not tested in production.



9.00

6.00

3.00

0.00

-3.00

-6.00

-9.00

-50

BOP+

BOP

-20

10

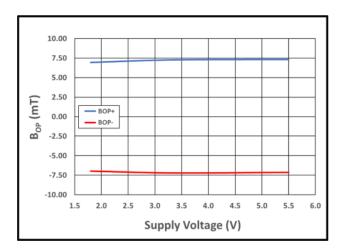
40

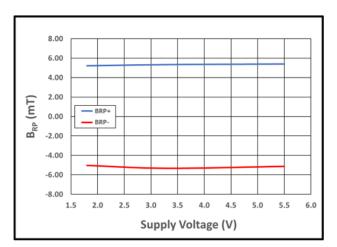
Operating Temperature (°C)

Figure 16: B<sub>OP</sub> (Orange) and B<sub>OP</sub> (Green) vs.

Temperature at  $V_{DD} = 3.3$  V

70


100


130

B<sub>op</sub> (mT)

### **TYPICAL MAGNETIC CHARACTERISTICS FOR CT8152PC IN DIGITAL MODE**

 $V_{DD}$  = 3.3 V,  $T_A$  = 25°C, and  $C_{BYP}$  = 1.0 µF (unless otherwise specified)





at T<sub>A</sub> = 25°C

Figure 14: B<sub>OP</sub> (Red) and B<sub>OP</sub> (Blue) vs. Supply Voltage Figure 15: B<sub>RP</sub> (Red) and B<sub>RP</sub> (Blue) vs. Supply Voltage at T<sub>A</sub> = 25°C

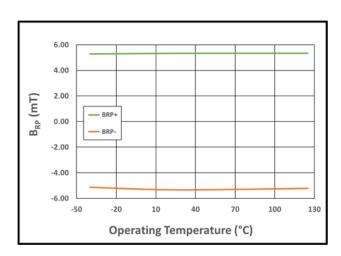



Figure 17: B<sub>RP-</sub> (Orange) and B<sub>RP+</sub> (Green) vs. Temperature at  $V_{DD} = 3.3$  V



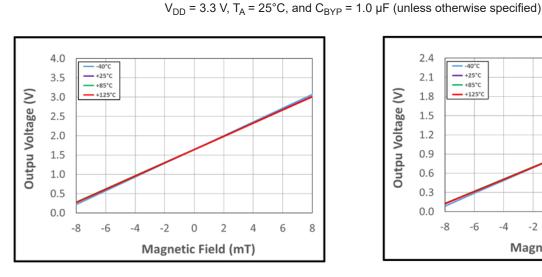



Figure 18: Output Voltage vs. Magnetic Field over Temperature at V<sub>DD</sub> = 3.3 V

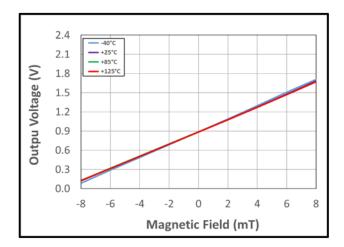
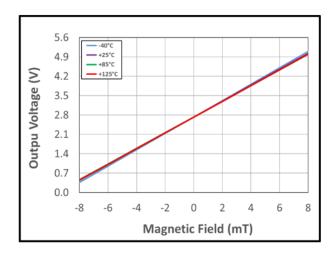




Figure 19: Output Voltage vs. Magnetic Field over Temperature at V<sub>DD</sub> = 1.8 V



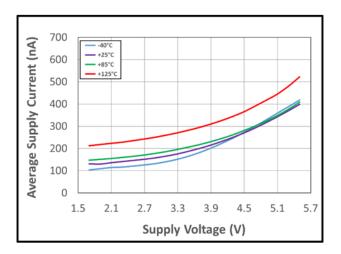

**TYPICAL MAGNETIC CHARACTERISTICS FOR CT8152PC IN ANALOG MODE** 

Figure 20: Output Voltage vs. Magnetic Field over Temperature at V<sub>DD</sub> = 5.5 V



### **TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8152PC IN DIGITAL MODE ONLY**

 $V_{DD}$  = 3.3 V,  $T_A$  = 25°C, and  $C_{BYP}$  = 1.0 µF (unless otherwise specified)





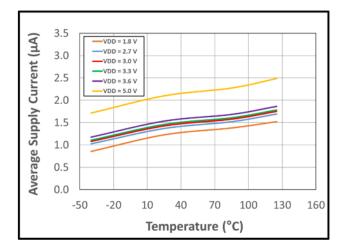



Figure 22: Average Supply Current vs. Temperature vs. Supply Voltage

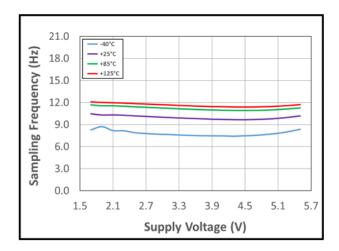



Figure 23: Sampling Frequency vs. Supply Voltage vs. Temperature



### **TYPICAL ELECTRICAL CHARACTERISTICS FOR CT8152PC IN ANALOG AND DIGITAL MODE**



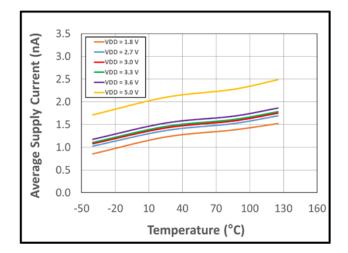



Figure 24: Average Supply Current vs. Supply Voltage vs. Temperature

Figure 25: Average Supply Current vs. Temperature vs. **Supply Voltage** 

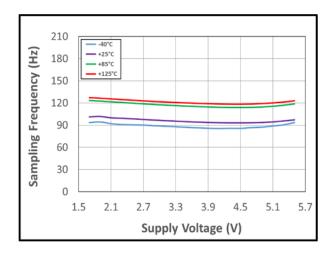
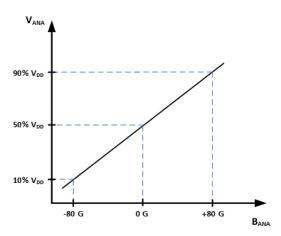
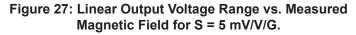



Figure 26: Sampling Frequency vs. Supply Voltage vs. Temperature




### FUNCTIONAL DESCRIPTION

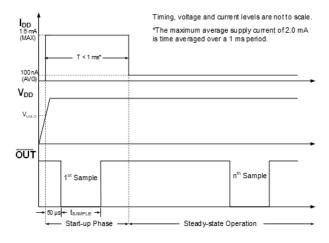

### Overview

The CT815x is a product family of TMR analog sensors that provides a linear analog output voltage for a range of magnetic fields. It supports a wide operating voltage range of 1.7 to 5.5 V, enabling these devices to be used in many applications. Designed to consume a minimal amount of current which is ideal for battery-powered products.

### **Analog Output Measurement**

The CT815x provides a continuous (sample & hold) linear analog output voltage which represents the measured magnetic field. The output voltage range of ANA is 10% of  $V_{DD}$  to 90% of  $V_{DD}$  which represents the magnetic field from the typical low-end value of -80 G to the maximum magnetic field value of +80 G for a sensitivity of 5 mV/V/G. A resistor-capacitor (R-C) filter may be implemented on the ANA pin to further lower the noise. Figure 27 illustrates the output voltage range of the ANA pin as a function of the measured current.






### Undervoltage Lockout (UVLO)

The Undervoltage Lockout protection circuitry of the CT815x is activated when the supply voltage ( $V_{DD}$ ) falls below 1.53 V. The CT815x remains in a low quiescent state and the ANA and  $\overline{OUT}$  outputs are not valid until  $V_{DD}$  rises above the UVLO threshold (1.60 V).

### Power-On Time (t<sub>ON</sub>)

The Power-On Time  $(t_{ON})$  of 50  $\mu$ s is the amount of time required by the CT815x to start up, power-on, and acquire the first sample. The chip is fully powered up and operational from the moment the supply voltage passes the rising UVLO point (1.60 V). This time includes the ramp-up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply have reach the minimum V<sub>DD</sub>.





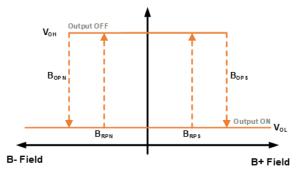





Table 1: CT8152 Push-Pull Output Behavior

| Magnetic Field | Condition                | Output     |
|----------------|--------------------------|------------|
| Positive Field | B > B <sub>OPS</sub>     | Low (ON)   |
| Positive Field | 0 < B < B <sub>RPS</sub> | High (OFF) |
| Nogotivo Field | B < B <sub>OPN</sub>     | Low (ON)   |
| Negative Field | 0 > B > B <sub>RPN</sub> | High (OFF) |



### **Dual Analog and Digital Output Mode**

The CT8152 supports both a digital and an analog signal output operating at the same time. The analog output will turn on when  $B_{RP}$  on the digital output side is triggered at  $\pm 8.0$  mT and both outputs remain on until the CT8152 is powered off. The digital output is configured as a CMOS push-pull, and it will start sampling one full cycle/period once dual output mode has been initiated. The analog and digital outputs have a sampling frequency of 100 Hz and 12.5 Hz, respectively, and they work independently of one another.

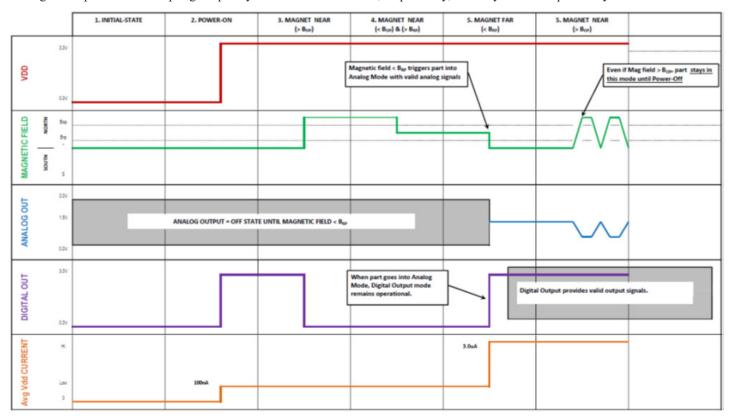



Figure 30: Dual Analog and Digital Mode Operating Conditions of the CT8152.



### **APPLICATIONS INFORMATION**

A decoupling capacitor,  $C_{BYP}$ , between the supply voltage (VDD) and ground (GND) is required to lower the noise going into the CT815x as well as providing isolation from the other circuits. The decoupling capacitor should be placed close to the TMR analog sensor. A typical capacitor value of 1.0  $\mu$ F (ceramic) will be sufficient. For the analog output, a simple RC filter (R = 47 k $\Omega$  and C = 100 pF) is recommended on the ANA pin as shown in Figure 31.

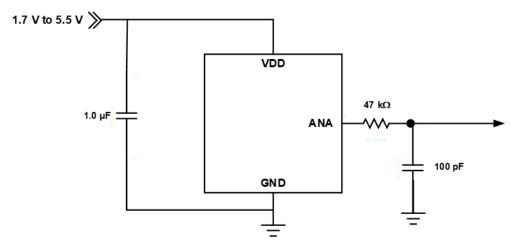
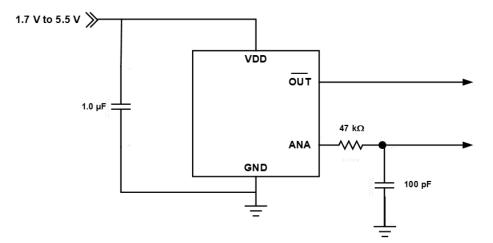
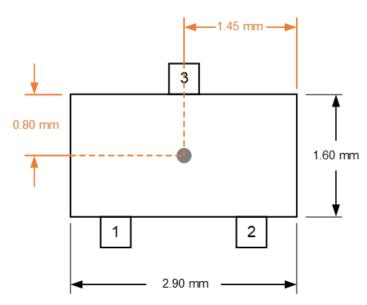
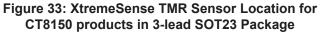
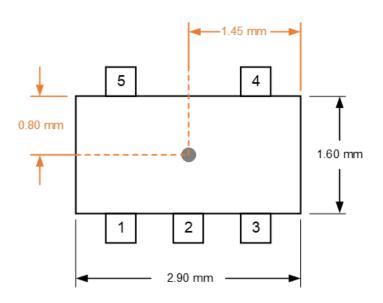


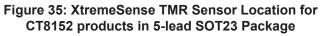

Figure 31: CT8150 Application Block Diagram

For the CT8152, the same bypass capacitor and RF filter of the CT8150 should be implemented.



Figure 32: CT8152 Application Block Diagram





### **XtremeSense TMR Current Sensor Location**

The XtremeSense TMR sensor location for the CT815x products are shown in Figure 33, Figure 34, and Figure 35. The dimensions shown in the three figures are typical values.









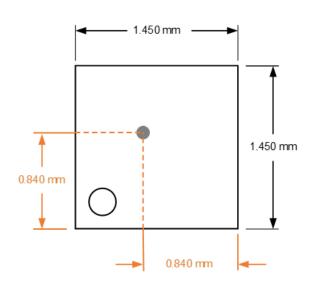



Figure 34: XtremeSense TMR Sensor Location for CT815x products in 4-lead LGA Package

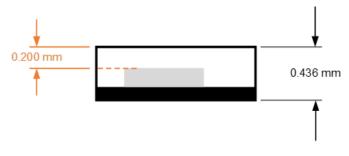



Figure 36: XtremeSense TMR Sensor Location in z Dimension for CT815x in 4-lead LGA Package

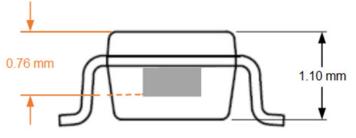
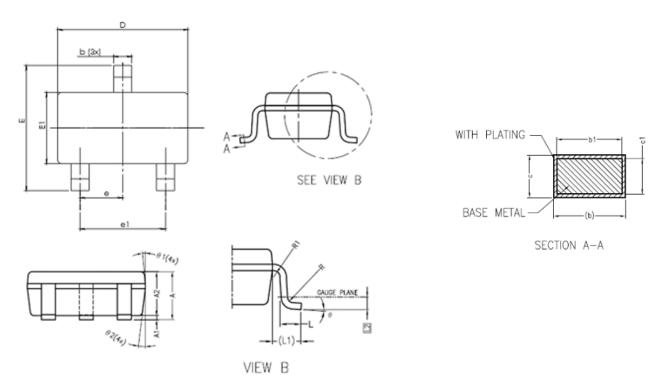



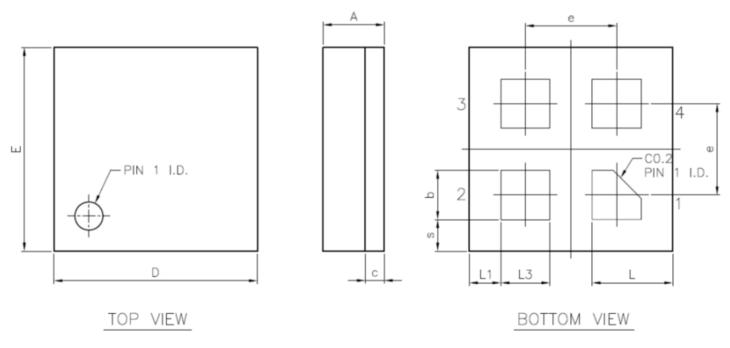

Figure 37: XtremeSense TMR Sensor Location in z Dimension for CT815x in SOT23 Package



# Integrated Omnipolar TMR Analog Sensor

### PACKAGE OUTLINE DRAWINGS






#### Table 2: CT815x 3-Lead SOT23 Package Dimensions

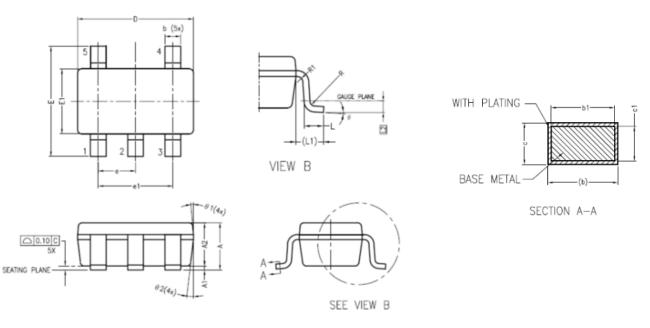
| Symphol | Dimens | Symphol |      |        |
|---------|--------|---------|------|--------|
| Symbol  | Min.   | Тур.    | Max. | Symbol |
| А       | 1.05   | 1.20    | 1.35 | e      |
| A1      | 0.00   | 0.10    | 0.15 | e1     |
| A2      | 1.00   | 1.10    | 1.20 | L      |
| b       | 0.30   | _       | 0.50 | L1     |
| b1      | 0.30   | 0.35    | 0.45 | L2     |
| с       | 0.08   | —       | 0.22 | R      |
| c1      | 0.08   | 0.13    | 0.20 | R1     |
| D       | 2.80   | 2.90    | 3.00 | θ      |
| E       | 2.60   | 2.80    | 3.00 | θ1     |
| E1      | 1.50   | 1.60    | 1.70 | θ2     |

| Symbol | Dimensions in Millimeters (mm) |          |      |  |  |
|--------|--------------------------------|----------|------|--|--|
|        | Min.                           | Тур.     | Max. |  |  |
| е      |                                | 0.95 BSC |      |  |  |
| e1     |                                | 1.90 BSC |      |  |  |
| L      | 0.35                           | 0.60     |      |  |  |
| L1     | 0.50 REF                       |          |      |  |  |
| L2     |                                | 0.25 BSC |      |  |  |
| R      | 0.10                           | —        | -    |  |  |
| R1     | 0.10                           | _        | 0.25 |  |  |
| θ      | 0°                             | 8°       |      |  |  |
| θ1     | 5°                             | 15°      |      |  |  |
| θ2     | 5°                             | 8°       | 15°  |  |  |





NOTES:


- 1. All dimensions are in millimeters.
- 2. Pin A1 ID is marked by ink or laser.

| Symphol | Dimensions in Millimeters (mm) |           |       |  |  |  |
|---------|--------------------------------|-----------|-------|--|--|--|
| Symbol  | Min.                           | Тур.      | Max.  |  |  |  |
| А       | 0.386                          | 0.436     | 0.486 |  |  |  |
| b       | 0.300                          | 0.350     | 0.400 |  |  |  |
| с       | -                              | 0.136 REF | _     |  |  |  |
| D       | 1.400                          | 1.450     | 1.500 |  |  |  |
| E       | 1.400                          | 1.450     | 1.500 |  |  |  |
| е       | _                              | 0.650     | _     |  |  |  |
| L       | 0.525                          | 0.575     | 0.625 |  |  |  |
| L1      | 0.175                          | 0.225     | 0.275 |  |  |  |
| L3      | 0.300                          | 0.350     | 0.400 |  |  |  |
| s       | 0.175                          | 0.225     | 0.275 |  |  |  |

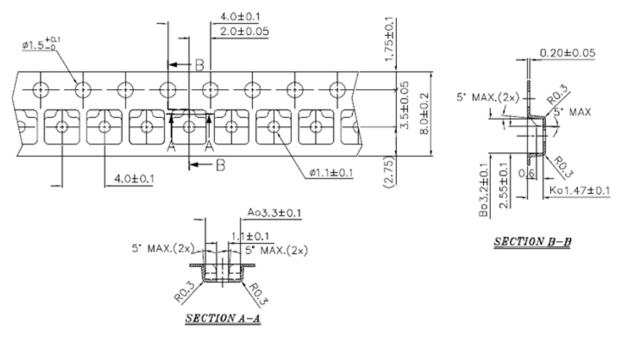
#### Table 3: CT815x 4-Lead LGA Package Dimensions



# Integrated Omnipolar TMR Analog Sensor






| Symbol | Dimens | Dimensions in Millimeters (mm) |      |  |  |  |
|--------|--------|--------------------------------|------|--|--|--|
| Symbol | Min.   | Тур.                           | Max. |  |  |  |
| A      | 1.05   | 1.20                           | 1.35 |  |  |  |
| A1     | 0.00   | 0.10                           | 0.15 |  |  |  |
| A2     | 1.00   | 1.10                           | 1.20 |  |  |  |
| b      | 0.30   | —                              | 0.50 |  |  |  |
| b1     | 0.30   | 0.35                           | 0.45 |  |  |  |
| с      | 0.08   | —                              | 0.22 |  |  |  |
| c1     | 0.08   | 0.13                           | 0.20 |  |  |  |
| D      | 2.80   | 2.90                           | 3.00 |  |  |  |
| E      | 2.60   | 2.80                           | 3.00 |  |  |  |
| E1     | 1.50   | 1.60                           | 1.70 |  |  |  |

| Table 4: CT815 | 3-Lead SOT23 Package Dimensions |
|----------------|---------------------------------|
|                |                                 |

| Symbol | Dimensions in Millimeters (mm) |           |      |  |  |
|--------|--------------------------------|-----------|------|--|--|
|        | Min.                           | Тур.      | Max. |  |  |
| е      |                                | 0.95 BSC  |      |  |  |
| e1     |                                | 1.90 BSC  |      |  |  |
| L      | 0.35                           | 0.35 0.43 |      |  |  |
| L1     | 0.60 REF                       |           |      |  |  |
| L2     |                                | 0.25 BSC  |      |  |  |
| R      | 0.10                           | _         | _    |  |  |
| R1     | 0.10                           | _         | 0.25 |  |  |
| θ      | 0°                             | 0° 4° 8°  |      |  |  |
| θ1     | 5° 6° 15°                      |           |      |  |  |
| θ2     | 5° 8° 15°                      |           |      |  |  |



# TAPE AND REEL POCKET DRAWINGS AND DIMENSIONS



NOTES:

- 1. Material: Conductive Polystyrene.
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance  $\pm 0.20$  mm.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket and not pocket hole.
- 6. (S.R.  $\Omega$ /sq) means surface electric resistivity of the carrier tape.

#### Figure 41: Tape and Pocket Drawing for 3-lead SOT23 Package

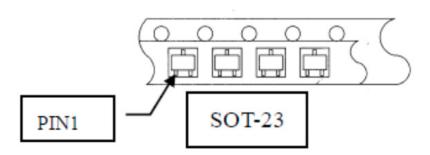
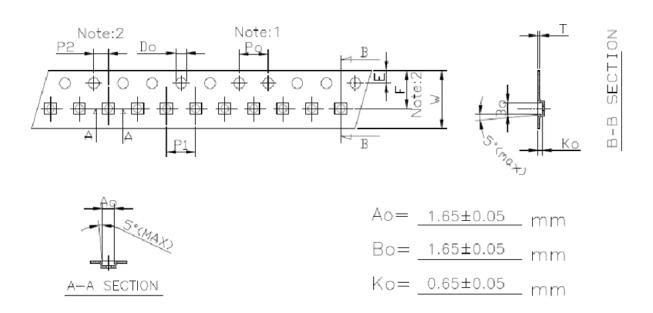
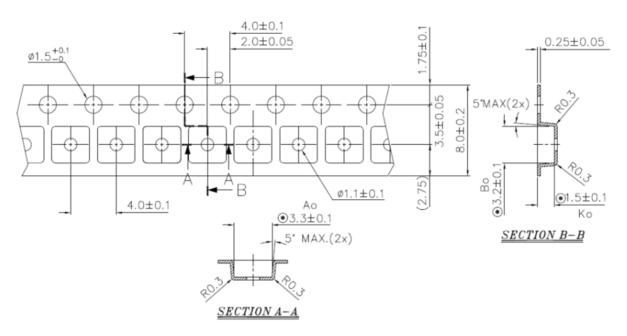




Figure 42: SOT23 Orientation in Tape Pocket





### Figure 43: Tape and Pocket Drawing for LGA-4 Package


| Symbol | Specification      |
|--------|--------------------|
| Po     | 4.00 mm ± 0.10 mm  |
| P1     | 4.00 mm ± 0.10 mm  |
| P2     | 2.00 mm ± 0.05 mm  |
| Do     | 1.50 mm ± 0.10 mm  |
| D1     | 1.10 mm ± 0.05 mm  |
| E      | 1.75 mm ± 0.10 mm  |
| F      | 3.50 mm ± 0.05 mm  |
| 10Po   | 40.00 mm ± 0.10 mm |
| W      | 8.00 mm ± 0.20 mm  |
| Т      | 0.25 mm ± 0.02 mm  |

#### Table 5: LGA-4 Tape and Pocket Dimensions

#### NOTES:

- 1. 10 sprocket hole pitch cumulative tolerance is  $\pm 0.10$  mm.
- 2. Pocket position is relative to sprocket hole measured as true position of pocket and not pocket hole.
- 3. Ao and Bo measured on a place of 0.3 mm above the bottom of the pocket to top surface of the carrier.
- 4. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 5. Carrier camber shall not more than 1 mm per 100 mm through a length of 250 mm.





NOTES:

- 1. Material: Conductive Polystyrene
- 2. Dimensions in mm.
- 3. 10 sprocket hole pitch cumulative tolerance  $\pm 0.20$  mm.
- 4. Camber not to exceed 1 mm in 100 mm.
- 5. Pocket position relative to sprocket hole measured as true position of pocket and not pocket hole.
- 6. (S.R.  $\Omega$ /sq) means surface electric resistivity of the carrier tape. S.R. is less than or equal to  $1.0 \times 10$ E7  $\Omega$ /sq.
- 7.  $A_O$  and  $B_O$  measured on a plane 0.30 mm above the bottom of the pocket.
- 8. K<sub>O</sub> measured from a plane on the inside bottom of the pocket to the top surface of the carrier.

#### Figure 44: Tape and Pocket Drawing for 5-lead SOT23 Package



### PACKAGE INFORMATION

#### Table 6: CT815x Package Information

| Part Number  | Package Type | # of Leads | Package<br>Quantity | Lead<br>Finish | Eco Plan <sup>[1]</sup> | MSL<br>Rating <sup>[2]</sup> | Operating<br>Temperature<br>(°C) <sup>[3]</sup> | Device<br>Marking <sup>[4]</sup> |
|--------------|--------------|------------|---------------------|----------------|-------------------------|------------------------------|-------------------------------------------------|----------------------------------|
| CT8150PC-IS3 | SOT23        | 3          | 3000                | Sn             | Green & RoHS            | 1                            | -40 to 85                                       | MH<br>YWWS                       |
| CT8150PC-HS3 | SOT23        | 3          | 3000                | Sn             | Green & RoHS            | 1                            | -40 to 125                                      | MH<br>YWWS                       |
| CT8150PC-IL4 | LGA          | 4          | 3000                | Au             | Green & RoHS            | 3                            | -40 to 85                                       | ΗYZ                              |
| CT8150PC-HL4 | LGA          | 4          | 3000                | Au             | Green & RoHS            | 3                            | -40 to 125                                      | ΗYZ                              |
| CT8152PC-IS5 | SOT23        | 5          | 3000                | Au             | Green & RoHS            | 1                            | -40 to 85                                       | MK<br>YWWS                       |
| CT8152PC-HS5 | SOT23        | 5          | 3000                | Au             | Green & RoHS            | 1                            | -40 to 125                                      | MK<br>YWWS                       |
| CT8152PC-IL4 | LGA          | 4          | 3000                | Au             | Green & RoHS            | 3                            | -40 to 85                                       | R YZ                             |
| CT8152PC-HL4 | LGA          | 4          | 3000                | Au             | Green & RoHS            | 3                            | -40 to 125                                      | R YZ                             |

[1] RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of chlorine (CI), bromine (Br), and antimony trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.

<sup>[2]</sup> MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

<sup>[3]</sup> Package will withstand ambient temperature range of -40°C to 150°C and storage temperature range of -65°C to 150°C.

<sup>[4]</sup> Device Marking for SOT23 is defined as XZ YWWS where XZ = part number, Y = year, WW = work week, and S = sequential number. LGA is defined as X where X = part number and YZ = date code information.



# Integrated Omnipolar TMR Analog Sensor

#### **Revision History**

| [ | Number | Date              | Description                                    |
|---|--------|-------------------|------------------------------------------------|
|   | 2      | December 11, 2023 | Document rebranded and minor editorial updates |

Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

