

# **APEK8650**

## A8650 Evaluation Board User Guide

### DESCRIPTION

This evaluation board is used to demonstrate the operation and performance of the Allegro A8650 synchronous buck regulator module.

### FEATURES

- A8650 synchronous buck converter
- Test points for input and output power and easy access to common signals of interest
- Configured for 1.8 V output voltage at up to 2 A with a 2 MHz switching frequency

### **EVALUATION BOARD CONTENTS**

• APEK8650 evaluation board



Figure 1: APEK8650 Evaluation Board

#### Table 1: A8650 Evaluation Board Configurations

| Part Number       | Package  | Output Voltage |  |  |
|-------------------|----------|----------------|--|--|
| APEK8650KLY-01-MH | eMSOP-10 | 1.8 V          |  |  |

### **Table of Contents**

| Description                       | 1 |
|-----------------------------------|---|
| Features                          | 1 |
| Evaluation Board Contents         | 1 |
| Using the Evaluation Board        | 2 |
| Evaluation Board Performance Data | 3 |
| Schematic                         |   |
| Layout                            | 6 |
| Bill of Materials                 | 8 |
| Related Links                     | 8 |
| Application Support               | 8 |
| Revision History                  | 9 |
|                                   |   |

#### Table 2: General Specifications

| Specification              | Min. | Nom. | Max. | Units |
|----------------------------|------|------|------|-------|
| Input Operating Voltage    | 2.5  | 5    | 5.5  | V     |
| Input Voltage UVLO Rising  | 2    | 2.22 | 2.45 | V     |
| Input Voltage UVLO Falling | 1.8  | 2.02 | 2.25 | V     |
| Output Voltage             | _    | 1.8  | _    | V     |
| Output Current (VIN = 5 V) | -    | _    | 2    | A     |

### USING THE EVALUATION BOARD

This section provides an overview of the connections and configuration options of the APEK8650 evaluation board. Each group of connections is highlighted in Figure 2 and detailed in the material that follows. For more detailed information about the use and functionality of each pin, refer to the A8650 datasheet.

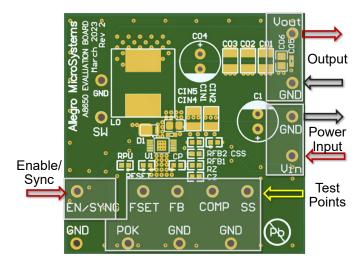



Figure 2: APEK8650 Evaluation Board I/O Connections and Default Jumper Positions

#### **POWER INPUT**

Connect a 5 V power supply capable of at least 1.5 A from VIN to GND. Once operational, VIN can fall as low as 2.02 V typical (2.25 V max) before the A8650 is reset.

#### **DEVICE CONFIGURATION**

To enable the A8650, connect the power input and connect a signal from EN/SYNC to GND. If the EN/SYNC input voltage exceeds 1.8 V, the A8650 becomes enabled. If the EN/SYNC input voltage is less than 0.8 V, the A8650 becomes disabled. Also, EN/SYNC may be used to simultaneously enable the A8650 and synchronize the PWM switching frequency by applying a square wave with frequency greater than 2.4 MHz.

Do not exceed the absolute maximum rating of 6 V on the VIN or EN/SYNC pin. For maximum ratings of all pins, refer to the datasheet.

Test points on the evaluation board are used to monitor or exercise the A8650. For a description of each test point, see Table 3.

#### **Table 3: Test Point Descriptions**

| Test Point | Description                                                                                                           |  |
|------------|-----------------------------------------------------------------------------------------------------------------------|--|
| VIN        | Positive terminal for input-voltage connection or sensing                                                             |  |
| VOUT       | Positive terminal for output-voltage connection or sensing                                                            |  |
| GND        | Negative terminal for voltage input/output or sensing                                                                 |  |
| EN/SYNC    | EN/SYNC pin external logic input for chip enable or switching-frequency synchronization                               |  |
| SS         | Soft-start pin voltage-monitor test point                                                                             |  |
| FSET       | FSET voltage-monitor test point                                                                                       |  |
| POK        | Power OK signal test point: This pin is pulled up to VOUT and asserts low to indicate the output is out of regulation |  |
| FB         | Feedback pin test point                                                                                               |  |
| COMP       | Current mode control-loop compensation test point                                                                     |  |



#### **EVALUATION BOARD PERFORMANCE DATA**

#### Startup and Shutdown

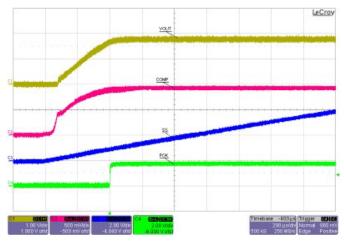



Figure 3: Startup with VIN = 5 V, IOUT = 1.8 A (1  $\Omega$  load)

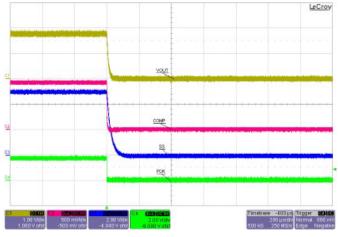



Figure 4: Shutdown with VIN = 5 V, IOUT = 1.8 A (1  $\Omega$  load)

#### Load-Transient Response

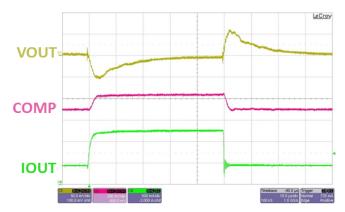
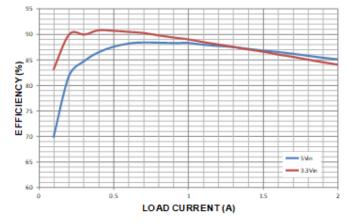




Figure 5: V<sub>OUT</sub> Response to Load Transient with VIN = 5 V and Load Step = 500 mA to 1.5 A



#### Efficiency





### 

Figure 7: Load Regulation with  $V_{OUT}$  = 1.8 V

#### 0.1 0.08 0.06 0.04 0.02 0.02 0.02 0.02 0.02 0.06 0.08 0.1 4.2 4.4 2.8 3 3.2 3.4 36 3.8 4 4.6 4.8 INPUT VOLTAGE (V)





4

### Load Regulation

Line Regulation

### SCHEMATIC

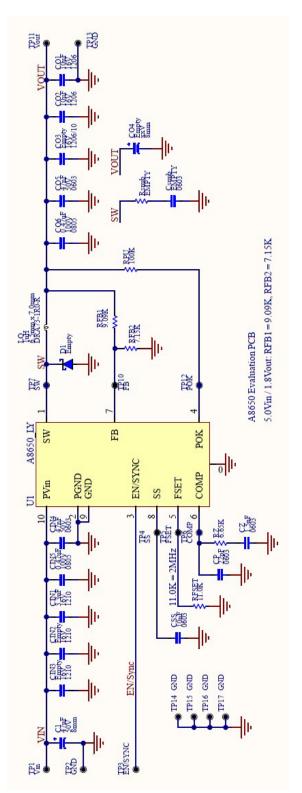



Figure 9: APEK8650KLY Evaluation Board Schematic



### LAYOUT



Figure 10: Top Layer with Silk Screen

Figure 11: Top Layer

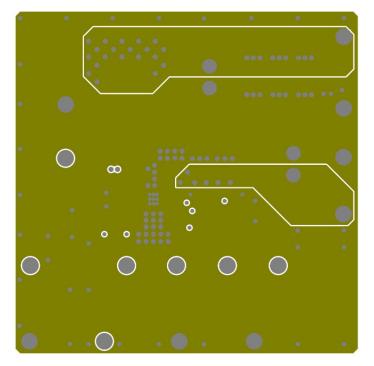



Figure 12: Inner Layer 1

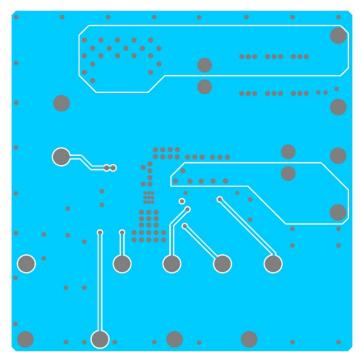
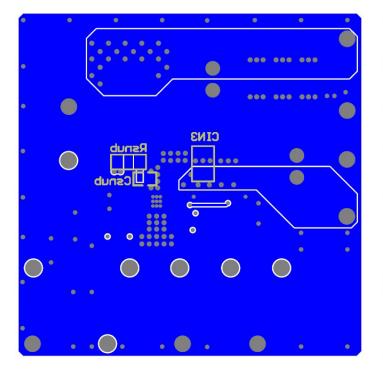




Figure 13: Inner Layer 2





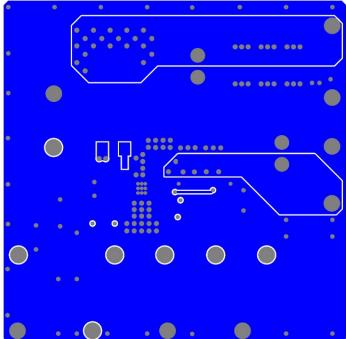



Figure 14: Bottom Layer with Silk Screen

Figure 15: Bottom Layer



### **BILL OF MATERIALS**

#### Table 2: APEK8650KLY Evaluation Board Bill of Materials

| Designator                                         | Description                                                                     | Footprint                         | Qty | Manufacturer                     | Manufacturer Part<br>Number |
|----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|-----|----------------------------------|-----------------------------|
| U1                                                 | A8650 2 A Buck Regulator                                                        | eMSOP-10                          | 1   | Allegro<br>MicroSystems          | A8650KLYTR-T                |
| RFB1                                               | Resistor, 9.09 kΩ, 1/10 W, 1%                                                   | 0603                              | 1   | Yageo                            | RC0603FR-079K09L            |
| RFB2                                               | Resistor, 7.15 kΩ, 1/10 W, 1%                                                   | 0603                              | 1   | Yageo                            | RC0603FR-077K15L            |
| RFSET                                              | Resistor, 11.0 kΩ, 1/10 W, 1%                                                   | 0603                              | 1   | Yageo                            | RC0603FR-0711KL             |
| RZ                                                 | Resistor, 6.65 kΩ, 1/10 W, 1%                                                   | 0603                              | 1   | Yageo                            | RC0603FR-076K65L            |
| RPU                                                | Resistor, 100 kΩ, 1/10 W, 1%                                                    | 0603                              | 1   | Yageo                            | RC0603FR-07100KL            |
| C1                                                 | Capacitor, electrolytic, 47 $\mu\text{F},$ 50 V, <0.5 $\Omega,$ ,–40°C to 125°C | Thru-hole,<br>8 mm x 11.5 mm      | 1   | Nichicon                         | UBT1H470MPD                 |
| CIN1                                               | Capacitor, ceramic, 3.3 μF, 16 V, 10% or<br>20%, X7R, –55°C to 125°C            | 1206 part,<br>1210 pads           | 1   | Samsung<br>Electro-<br>Mechanics | CL31B335KOHNNNE             |
| CIN4, CO5                                          | Capacitor, ceramic, 47 nF, 50 V, 10%,<br>X7R, –55°C to 125°C                    | 0603                              | 2   | Kemet                            | C0603C473K5RAC7867          |
| CIN5, CO6                                          | Capacitor, ceramic, 0.47 μF, 100 V, 10%,<br>X7R, –55°C to 125°C                 | 0805                              | 2   | Murata                           | GRM21BR72 A474KA73L         |
| CO1, CO2                                           | Capacitor, ceramic, 10 μF, 16 V, 10%,<br>X7R, –55°C to 125°C                    | 1206 part,<br>1210 pads           | 2   | ТDК                              | C3216X7R1C106K160AC         |
| CSS                                                | Capacitor, ceramic, 10 nF, 25 V, 5%, C0G                                        | 0603                              | 1   | TDK                              | CGA3E2C0G1H103J080AA        |
| CZ                                                 | Capacitor, ceramic, 1.5 nF, 50 V, 10%, C0G                                      | 0603                              | 1   | Murata                           | GRM1885C1H152JA01D          |
| CP                                                 | Capacitor, ceramic, 22 pF, 50 V, 5%, C0G                                        | 0603                              | 1   | Yageo                            | CC0603JRNPO9BN220           |
| LO                                                 | Inductor, SMT, 1 μH, 6.7 mΩ max,<br>8.22 Asat                                   | 7.6 mm x 7.6 mm,<br>4.35 mm thick | 1   | Eaton                            | DRA73-1R0-R                 |
| VIN, EN/SYNC, SW, POK,<br>VOUT, SS, FSET, FB, COMP | Test points, red, 0.063-inch diameter                                           | 0.063"                            | 9   | Keystone                         | 5010                        |
| GND                                                | Test points, black, 0.063-inch diameter                                         | 0.063"                            | 5   | Keystone                         | 5011                        |
| Rubber Feet                                        | Self-stick rubber feet                                                          | Clear                             | 4   | 3M                               | SJ-5303 (CLEAR)             |
| CO3, CO4, CIN2, CIN3,<br>Rsnub, Csnub, D1          | Empty                                                                           | _                                 | 0   | _                                | _                           |

### **RELATED LINKS**

A8650 Product Page: https://www.allegromicro.com/en/products/regulate/regulators/single-output-regulators/a8650 A8650 Datasheet: https://www.allegromicro.com/-/media/files/datasheets/a8650-datasheet.pdf

### **APPLICATION SUPPORT**

For applications support contact, go to https://www.allegromicro.com/en/about-allegro/contact-us/technical-assistance and navigate to the appropriate region.



#### **Revision History**

| N | Number | Date             | Description     |  |
|---|--------|------------------|-----------------|--|
|   | -      | November 1, 2023 | Initial release |  |

Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

